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1. Executive Summary 

This report presents a review of the literature concerning approaches to communicating 

confidence and uncertainty, with the objective of informing best practice in seasonal-to-

decadal climate predictions. As issues pertaining to the communication of uncertainty 

transcend disciplinary boundaries this review draws upon research conducted in a range of 

fields, including: weather, climate policy, health and medicine, environmental risk 

management, economics, experimental psychology, and engineering. 

The review highlights a number of factors that are likely to impact on end-users’ 

interpretation and usage of information concerning confidence and uncertainty in seasonal-

to-decadal climate and climate impact predictions. These include: ambiguity aversion, trust 

in information providers, institutional protocol, technical expertise, level of precision, the type 

of visualisation tool(s) used, and systematic thought biases.  

Methods of presenting uncertainty information in numeric, verbal and visual formats are 

discussed. Numeric presentations permit uncertainty to be formally represented as ranges 

and confidence limits; but those users with less experience of using statistical information 

may struggle to extract appropriate meaning from them. The employment of verbal 

descriptors and evaluative categories may enhance the ability of these users to interpret 

statistical uncertainty information, but providing these without accompanying numeric ranges 

can lead to high variability in the way in which 'uncertainty language' is interpreted. 

Visualisations provide a versatile way to display uncertainty information at varying levels of 

complexity.  For these to be developed to best effect, however, communicators must 

consider a) what type of information end-users want; b) how they wish to make use of it; and 

c)  the context in which the information will be used. Various methods of visually 

communicating uncertainty in seasonal climate predictions already exist. However, to date 

there has been little systematic testing of how understandable, useful or open to 

misinterpretation they are.  The need to rigorously test methods of communication prior to 

use, in particular when applied to seasonal-to-decadal climate predictions, is therefore 

stressed and directions for future research outlined. 

2. Project Objectives 

With this deliverable, the project has contributed to the achievement of the following 

objectives (DOW, Section B1.1): 

No. Objective Yes No 

1 

Develop and deliver reliable and trusted impact 
prediction systems for a number of carefully selected 
case studies. These will provide working examples of 
end to end climate-to-impacts-decision making 
services operation on S2D timescales. 

 
X 

2 

Assess and document key knowledge gaps and 
vulnerabilities of important sectors (e.g., water, 
energy, health, transport, agriculture, tourism), along 
with the needs of specific users within these sectors, 
through close collaboration with project stakeholders.  

 
X 
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3 
Develop a set of standard tools tailored to the needs 
of stakeholders for calibrating, downscaling, and 
modelling sector-specific impacts on S2D timescales. 

  

4 

Develop techniques to map the meteorological 
variables from the prediction systems provided by the 
WMO GPCs (two of which (Met Office and 
MeteoFrance) are partners in the project) into 
variables which are directly relevant to the needs of 
specific stakeholders.  

 
X 

5 

Develop a knowledge-sharing protocol necessary to 
promote the use of these technologies. This will 
include making uncertain information fit into the 
decision support systems used by stakeholders to 
take decisions on the S2D horizon. This objective will 
place Europe at the forefront of the implementation of 
the GFCS, through the GFCS's ambitions to develop 
climate services research, a climate services 
information system and a user interface platform. 

x 
 

6 

Assess and document the current marketability of 
climate services in Europe and demonstrate how 
climate services on S2D time horizons can be made 
useful to end users. 

 
X 

 

 

3. Detailed Report  

3.1. Introduction 

The clear and accurate communication of confidence and uncertainty in seasonal to decadal 

climate predictions is vital if end users are to be able to utilise these predictions in a truly 

informed manner. The question of how this information can best be conveyed is therefore 

one of high importance to both the providers and users of climate predictions. It is not 

however one to which a simple answer is immediately available. With end users inevitably 

varying in goals, information preferences, statistical understanding, and technical expertise, 

formats that suit one user may be perceived as overly complex (or overly simplistic) by 

another. While a number of methods of communicating confidence and uncertainty in climate 

information exist, to date relatively little research has empirically tested their efficacy specific 

context of seasonal to decadal climate predictions. A larger body of research does however 

exist with respect to the perception and communication of uncertainty in the context of a) 

weather; b) longer term climate projections, and c) fields outside the domain of meteorology 

and climatology. Hence,  in examining existing approaches to communicating confidence 

and uncertainty this present review will not only discuss research pertaining to the 

communication of uncertainty in the context of climate and weather, but also findings from 

the domains such as economics, medicine, environmental health, policy, and engineering. 

Of course, as Stephens, Edwards, and Demeritt (2012) point out, best practice for 

communicating information about uncertainties in one domain may not necessarily apply to 

all others. For this reason, when discussing the findings of studies outside of the weather 
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and climate domain, care will be taken to stress the nature of the context. 

In the next section (3.2) general issues pertaining to the definition and reporting of 

‘confidence’ and ‘uncertainty’ will be outlined. This will be followed by a broad discussion of 

various methods of presenting information about uncertainties and the ‘cognitive biases’ and 

misunderstandings that may accompany them (3.3), before we turn our attention to existing 

and proposed methods of visually communicating confidence uncertainty in the specific 

context seasonal to decadal climate predictions (3.4). Finally, we conclude by outlining 

directions for further research (3.5). 

3.2. General issues in confidence and uncertainty 

3.2.1. Defining confidence and uncertainty 

One difficulty with using the terms ‘uncertainty’ and ‘confidence’ when discussing potential 

future states of the world is that the terms are often used differently from case to case. In 

certain contexts, they may be used describe the same thing, with ‘high confidence’ simply 

being taken to mean ‘low uncertainty’. Alternatively, as is the case in the IPCC Fifth 

Assessment Report (AR5), 'confidence' may be treated as a very specific type of non-

certainty, encapsulating consensus and quality of evidence rather than estimated likelihood 

(Mastrandrea et al., 2010). In addition to differences in formal definition, the terms may in 

themselves carry different connotations, with ‘confidence’ eliciting more positive associations 

and ‘uncertainty’ more negative ones. Hence, the choice of vocabulary is not neutral, though 

this is seldom discussed. 

Of course uncertainty itself can be classified in different ways and attributed to different 

sources (see for example (Dessai & Hulme, 2004; Paté-Cornell, 1996; Spiegelhalter & 

Riesch, 2011). While the word is often used as something of an umbrella term, 

encompassing all forms and sources of non-certainty, more precise definitions are 

sometimes utilised. Following Knight (1921), much of the work on economic decision making 

and behavioural finance segregates ‘decisions under risk’ from ‘decisions under uncertainty’. 

Under this classification system ‘risk’ concerns those situations where probabilities 

are well-defined, while ‘uncertainty’ concerns instances where there is either a lack of 

explicit information or incomplete information about probabilities. A similar distinction 

is drawn upon by Stirling (2007) who, in discussing risk policy, defines risk as a state where 

the probabilities of potential outcomes can be clearly defined; and uncertainty where 

probabilities cannot be assigned to potential outcomes. Stirling also identifies two further 

categories of incertitude: ambiguity, where potential outcomes are contested and/or not 

clearly defined; and ignorance, where both likelihoods and potential outcomes are 

unknown. Stirling notes that according to this system of classification a hazard such as 

flooding may fall into the category of risk if one assumes an unchanging climate; with 

climatology providing the means to estimate likelihood and magnitude based on historical 

observation. Under climate change however flooding falls into the category of uncertainty; 

with past observations being less representative of present likelihood.  
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Table 1  Stirling's four categories of “Incertitude” 

Risk 

 Probability of events 
known 

 Outcomes and impacts 
of events well defined 

Ambiguity 

 Probability of events 
known 

 Outcomes and impacts 
of events unknown or 
disputed 

Uncertainty 

 Probabilities unknown 
or incomplete. 

 Outcomes and impacts 
of events well defined 

Ignorance 

 Probabilities unknown 

 Outcomes and impacts 
of events unknown or 
disputed 

 

This framework allows a distinction to be made between those instances where probabilities 

alone are unknown and those where there is a lack of knowledge regarding outcomes and 

impacts. However, it should be noted that this particular use of the term ambiguity differs 

from the way it has been used elsewhere. For example Ellsberg (1990), who formally 

identified the phenomenon of ‘ambiguity aversion’ (see subsection 3.2.1. below), uses the 

term ‘ambiguity’ to denote Knightian uncertainty (see above) or: 

“... the quality depending on the amount, type, reliability, and unanimity of information, giving 

rise to one’s degree of confidence in an estimate of relative likelihood” (p.657). 

Indeed in much of the literature on judgement and decision making, the phrase ambiguity is 

used synonymously with uncertainty in to refer to any scenario where information regarding 

probabilities (or potential outcomes) is incomplete (see for instance (Tversky & Shafir, 1992; 

Van Dijk & Zeelenberg, 2003). According to this conceptualisation, seasonal climate 

predictions – or indeed any forecasting system that lacks perfect reliability – are ambiguous 

in the sense that the models from which they are derived cannot capture every single factor 

that may impact on the climate system. It should of course be kept in mind that these highly 

specific definitions of uncertainty do not always match the way in which the term is used in a 

more generally understood sense (i.e. to refer to instances where there is non-certainty 

regardless of whether likelihoods are known or not). They do however permit a distinction to 

be drawn between situations where probabilities are explicitly defined and those where they 

are not. This split is also captured by the concepts of first order uncertainty and second order 

uncertainty. Here, first order uncertainty is synonymous with probability, and is in keeping 

with Knight's conceptualisation of risk. Second order uncertainty meanwhile is consistent 

with Ellsberg’s notion of ambiguity, encapsulating uncertainty about probabilities (see for 

example (Vercelli, 1999). Hence, uncertainty pertaining particular prediction or forecast may 

be decomposed into first order and second order components: first order being the likelihood 

of a particular event occurring according to model outputs (e.g. distribution of ensemble 

members); second order being the extent to which models actually capture reality.   

This distinction is, to a degree, additionally reflected in that made between aleatory and 

epistemic uncertainty (e.g. Paté-Cornell, 1996). In this taxonomy, aleatory uncertainty is that 

which can be attributed to randomness (and thus be statistically well defined). Epistemic 

uncertainty meanwhile refers to instances where knowledge is incomplete (due, for example, 
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to errors in measurement and observation, neglected variables, disagreement between 

researchers, model formulation). It has however been suggested that the concepts of 

aleatory and epistemic uncertainty are not sufficient to capture all sources of incertitude. The 

term human reflexive uncertainty is used by Dessai and Hulme (2004), to refer to the 

reflexive response of humans towards uncertainty information (e.g. the potential for 

behavioural changes made in response to climate change communication to impact on 

future climate states). Politi, Han, and Col (2007) meanwhile identify perceived personal 

relevance and information complexity as further sources of uncertainty on the part of 

information recipients. Here a lack of certainty regarding future states (and optimal 

responses) results from neither randomness nor limitations in scientific knowledge, but from 

recipients’ ability (or lack thereof) to comprehend the information with which they are 

provided and meaningfully integrate it into their own decision making. Indeed end-users 

‘common sense’ understanding of terms such as confidence, uncertainty and ambiguity may 

in themselves differ from those definitions used by scientists and information providers, 

rendering interpretation more complex. 

In addition to being attributed to different sources, different approaches to quantifying and 

characterising uncertainty exist. A distinction is often drawn between Frequentist and 

Bayesian (also known as Subjectivist) approaches to uncertainty. Frequentist probabilities 

are those where a full probability distribution may be obtained from direct observation, and 

are held to represent objectively quantifiable properties of the world given fixed underlying 

parameters (though these may be subject to measurement error). With Bayesian 

probabilities, values of formally unknown underlying parameters may be inferred from expert 

belief and probabilistic estimates generated on the basis of said assumed parameters (see 

for instance (Campbell, 2011) for discussion). As Campbell notes, the manner in which IPCC 

AR4 and AR5 guidelines segregate ‘confidence’ and likelihood represents an attempt to 

separate out subjective and frequentist elements of uncertainty (see Figure 1 and Table 1 

below for further details of AR5’s confidence and likelihood categories). 

 

Figure 1 “A depiction of evidence and agreement statements and their relationship to confidence. 
Confidence increases towards the top-right corner as suggested by the increasing strength of 
shading. Generally, evidence is most robust when there are multiple, consistent independent lines of 
high-quality evidence”. Figure and caption reproduced from: Guidance Note for Lead Authors of the 
IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (Mastrandrea et al., 
2010) 
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Table 2 Verbal likelihood scale set out in Guidance Note for Lead Authors of the IPCC Fifth 
Assessment Report on Consistent Treatment of Uncertainties. Reproduced from 
Mastrandrea et al. (2010) 

Term Likelihood of outcome 

Virtually certain  99-100% probability 

Very likely  90-100% probability 

Likely  66-100% probability 

About as likely as not  33 to 66% probability 

Unlikely  0-33% probability 

Very unlikely  0-10% probability 

Exceptionally unlikely  0-1% probability 
 

Also incorporated into the AR4 and AR5 guidelines is an instruction that the level of 

quantitative detail provided with respect to uncertainty should appropriately reflect level of 

knowledge (e.g. that highly specified probability distributions should not be provided if this 

level of detail cannot be supported). This was based upon recommendations made by 

Kandlikar, Risbey, and Dessai (2005), who set out a framework for identifying the 

appropriate level of detail for communicators to use when conveying uncertainty. Within this 

framework, a full probability distribution represents the highest level of detail followed by 

bounded intervals, order of magnitude, expected sign or trend, ambiguous sign or trend and 

effective ignorance. Since being proposed these recommendations have been incorporated 

into the guidelines for the IPCCs Fourth and Fifth Assessment Report (AR4 and AR5). 

As can be seen from this summary, uncertainty can be defined and characterised in a 

number of ways, some of which are more highly specified than others. For the purposes of 

this review however the term will used in accordance with the definition set out in the 

EUPORIAS glossary1 at the time of submission. 

Uncertainty “Uncertainty means lack of precision or that the exact value for a given time is 

not predictable, but it does not usually imply lack of knowledge. Often, the future state of a 

process may not be predictable, such as a roll with dice, but the probability of finding it in a 

certain state may be well known (the probability of rolling a six is 1/6, and flipping tails with a 

coin is 1/2). In climate science, the dice may be loaded, and we may refer to uncertainties 

even with perfect knowledge of the odds. Uncertainties can be modelled statistically in terms 

of pdfs, extreme value theory and stochastic time series models.” (EUPORIAS glossary, 

29/04/2014) 

Hence, uncertainty covers both instances where probability distributions are well defined and 

those where they are not. Unlike Knight (1921) and Stirling (2007), we will not therefore 

classify ‘decisions under uncertainty’ as separate from ‘decisions under risk’. Our working 

definition of risk will however be broadly in keeping with these conceptualisations, referring 

to the severity of an event weighted by its probability of occurring. 

Risk “Risk is often taken to be the product of the probability of an event and the severity of 

its consequences. In statistical terms, this can be expressed as Risk(Y)=Pr(X) C(Y|X), where 

                                            
1
 http://www.euporias.eu/glossary 
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Pr is the probability, C is the cost, X is a variable describing the magnitude of the event, and 

Y is a sector or region.” (EUPORIAS glossary, 29/04/2014) 

Like ‘uncertainty’ the term ‘confidence’ is one whose precise usage may differ 

depending on context. The confidence interval, for instance, is a statistical estimate of the 

range of values a parameter might take (e.g. a representation of dispersion). However, the 

word is also commonly used to refer to what might be termed ‘level of belief’ or the “trust you 

can place in a particular form of information”. As mentioned above, guidelines for the IPCC 

AR5 make a clear distinction between confidence and likelihood. In this framework, a 

measure of likelihood represents an event’s estimated probability of occurring (or the 

probability of an event occurring should a particular prior condition be fulfilled). Confidence, 

on the other hand, is a composite of amount of evidence (weak, moderate or robust) and 

level of agreement (low, medium or high). Elsewhere however this semantic distinction is not 

made. For instance, Han (2013), commenting on the problem of communicating uncertainty 

in a clinical setting, states that individual risk estimates derived from aggregate frequencies 

are: 

“...not “true” risk but a figurative expression of scientists’ confidence based on the 

aggregated outcomes of individuals whose characteristics are similar.” (p. 18)  

Hence, even when probabilities take the form of observed frequencies, it may be argued that 

subjective and objective elements cannot be entirely disentangled.  

In the present report however the term confidence will be used in accordance with the 

definition provided by the EUPORIAS glossary (see below), which in itself is broadly in 

keeping with the terminology of AR5. Although statistical terms, such as confidence level 

and confidence interval will, of course, be used in their technically understood manner.  

Confidence “The validity of a finding based on the type, amount, quality, and consistency of 

evidence (e.g., mechanistic understanding, theory, data, models, expert judgment) and on 

the degree of agreement. Confidence is expressed qualitatively (Mastrandrea et al., 2010).” 

(EUPORIAS glossary, 29/04/2014) 
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Key Points: Defining confidence and uncertainty 

 

 The words uncertainty and confidence are utilised in different ways in different 
contexts. In the context of seasonal to decadal climate predictions it is therefore 
necessary to identify and address potential mismatches in definition between 
information providers and end-users. 
 

 Uncertainty in predictions and projections arises from different sources (e.g. 
randomness, model parameters, human activities) and may be represented at 
different levels of detail (e.g. full probability distribution versus range versus ‘direction 
of change’). Overly specified representations may have the potential to mislead 
decision makers. 

 

 

3.2.2. Ambiguity aversion 

Ambiguity aversion refers to a tendency, frequently observed in experimental economics, for 

people to respond aversely to information where probabilities and outcomes are not clearly 

specified. It may lead decision makers to reject options where probabilities are not precisely 

specified in favour of those where they are; even when second order distributions of possible 

likelihoods may render them equivocal. The classic illustration of this is the Ellsberg Paradox 

(Ellsberg, 1961): the finding that people tend to prefer an option offering a definite 1/3 

chance of success to one offering an 'ambiguous' 0 – 2/3 chance of success. The presence 

or absence of 'missing information' has also been found to impact on judgement and 

decision making in situations where its actual content would not – had it been known – affect 

choice. Experimental studies demonstrate that where the outcome of an intermediate event 

is unknown (e.g. whether one has won or lost a gamble, or succeeded or failed in an 

endeavour) people may be a) less willing to accept further risk than they would if outcomes 

were known (regardless of what the known outcome is); and b) willing to pay to defer choice 

until the outcome of this intermediate event is known (despite making the same choice 

regardless of what the known outcome is) ) (Tversky & Shafir, 1992). Ambiguous information 

about likelihoods may also be discounted entirely. For instance, in one choice experiment 

involving a hypothetical business decision it was found that individuals who were told that 

market interest in a venture was 15-30% were as likely to terminate the venture as those 

who received no information about likelihoods, while those who were told that interest was 

15% or 30% were more likely to continue (Van Dijk & Zeelenberg, 2003). 

While the economic and psychological experiments reference above may concern 

hypothetical or trivial scenarios, their findings have very real and non-trivial implications for 

communication uncertain information. Ambiguity aversion may lead information recipients – 

especially those with lower statistical knowledge or less understanding of forecast limitations 

- to a) prefer information formats that appear to contain 'less ambiguity'; or b) pay for 

information that reduces (or appears to reduce) it. However, failing to convey ambiguity can 

be both dangerously misleading (Todini et al., 2005) and detrimental to long term trust in 

information providers (Pidgeon & Fischhoff, 2011).  Hence, while some recipients may 

prefer information formats that appear to denote less ambiguity, it is important that 

communicators avoid creating a false perception of certainty. 
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3.2.3. Institutional approach to uncertainty 

Tolerance for uncertainty varies not only between individuals, but between organisations. 

Institutional barriers to the use of new forecasts (and thus the incorporation of new forms of 

uncertainty into judgement and decision making) may exist (e.g. (Ramos, Mathevet, Thielen, 

& Pappenberger, 2010). This is a point highlighted by Demeritt, Nobert, Cloke, and 

Pappenberger (2010) who, discussing uptake and usage of hydrological ensemble prediction 

systems, note that deviation from previously established institutional practices may lead to 

greater blame in the case of false alarms or false misses. Methods of integrating institutional 

risk appetite into the operational use of seasonal climate predictions do of course exist. For 

example, ROC scores can be used to determine where thresholds for action should lie given 

a particular organisation’s tolerance for false alarms and false misses; though making use of 

them may be challenging for those without statistical knowledge or appropriate training. Use 

may be simplified and aided by the incorporation of these preferences into decision aids that 

provide Act/Don’t Act cues (Allen & Eckel, 2012). Again however reluctance to diverge from 

the status quo may be a barrier to their adoption. 

Institutions may also differ in the detail in uncertainty information required for decision 

making; with some requiring the identification of possible (or plausible) future states and 

others requiring a full treatment of (aleatory and epistemic) uncertainty. Writing in the field of 

risk analysis, Paté-Cornell (1996) sets out a six level framework for the treatment of 

uncertainties, going from Level 0: identification of potential hazards, to 1) identification of 

worst case scenario; 2) plausible upper bound (i.e. quasi-worst case); 3) best estimate of 

central tendency (i.e. point estimate based on mean, median or mode); 4) probabilistic risk 

analysis (in which all uncertainty information is represented by a single risk curve); and 5) full 

display of uncertainties (e.g. separate risk curves for all models/hypotheses). As she notes, 

the level of treatment needed may vary from case to case, with lower level representations 

sufficing in some instances but not in others.  

3.2.4 Credibility and trust 

The matter of how the presence of uncertainty influences both trust in information and trust 

in the providers of information is of importance to anybody wishing to communicate 

uncertainty in climate predictions. As previously noted, failing to adequately communicate 

uncertainty may, in the long term, lead to a loss of trust in information providers. When it 

comes to more immediate responses to uncertain information however, the broader 

judgement and decision making literature is however less clear. In one study examining 

judgement in a hypothetical medical choice scenario Longman, Turner, King, and McCaffery 

(2012) found that found that presenting wide likelihood ranges diminished credibility 

attributed to communicators (in this case clinicians). However, in another investigation – this 

time using a hypothetical intelligence forecast scenario – the reverse was found (Dieckmann, 

Mauro, & Slovic, 2010). This disparity may be the result of the different contexts used, with 

individuals expecting greater certainty from clinicians than intelligence reports. If this is the 

case one might imagine that climate predictions will be perceived as more akin to the latter 

than the former. Nonetheless, it is worth noting that a recent study examining trust in 

financial forecasting systems participants reported lower trust in the system when noise was 

higher than when it was lower (Goodwin, Sinan Gönül, & Önkal, 2013). However, in this 

case the fact that noise was high and signal weak was not explicitly conveyed. 

The format in which information regarding uncertainties is presented may also influence the 
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level of trust recipients place in it. On examining responses to an environmental hazard 

scenario, Gibson, Rowe, Stone, and Bruine de Bruin (2013) obtained evidence to suggest 

that participants presented with ‘graph-with-text’ displays containing uncertainty information 

trusted (and liked) said information more than ‘graph-with-text displays’ without uncertainty 

information. For text-only displays however a trend in the opposite direction was found. 

Likewise, the way in which ranges are labelled may also impact on response to the 

information. Goodwin et al. (2013) for instance found that labelling upper and lower 

confidence intervals as ‘best case’ and ‘worst case’ scenarios was associated with greater 

trust. This highlights the way in which seemingly inconsequential changes in format and 

phrasing may influence perception. 

3.2.5. User expertise 

In communicating uncertainty in climate predictions it should, of course, be kept in mind that 

one’s audience may vary in statistical expertise, experience of using climate predictions, and 

familiarity with representations of uncertainty in a more general sense.  

Research demonstrates that both mathematical ability (see (Peters, 2008) and graph literacy 

(e.g. Galesic & Garcia-Retamero, 2011; Okan, Garcia‐Retamero, Cokely, & Maldonado, 

2012) have a pronounced impact on individuals’ capacity to understand and utilise numeric 

and graphically presented information respectively. While it might be expected that a large 

proportion of those who obtain seasonal to decadal climate predictions will be 

mathematically adept individuals with high graph literacy, this may not universally be the 

case; especially where user organisations are smaller or provision more broadly available. 

Indeed, in the recent EUPORIAS Work Package 33 survey a notable minority of respondents 

indicated that they were not comfortable using measures of spread (e.g. confidence 

intervals, standard deviations). Hence, it is important to keep in mind that while some users 

will have a high degree of mathematical and technical knowledge, others may have far less 

experience with using statistical information, and thus struggle to interpret commonly used 

representations. As seasonal climate predictions become more common and reach a larger 

non-expert audience, this issue is likely to become more pronounced. 

There are also factors not directly related to general mathematical ability that may influence 

the manner in which one’s audience may interpret and utilise information regarding 

uncertainty. In a set of choice experiments featuring environmental management scenarios, 

Gregory et al. (2012) presented both experts (employed by the US Fish and Wildlife Service) 

and laypeople with information pertaining to uncertainties about the outcomes of alternative 

environmental management options. Information was presented in the form of either numeric 

ranges, evaluative categories (e.g. ‘high’, ‘medium’ or ‘low’ confidence in efficacy), or a 

combination of both. Comparison of the responses in each condition indicated that 

when both quantitative and qualitative information was presented together experts 

tended to base their decisions on numeric ranges while laypeople tended to rely on 

evaluative categories. This difference remained when mathematical ability was controlled 

for. As Gregory et al. notes, this suggests that presenting information in multiple forms may 

not necessarily lead to a convergence of interpretation between experts and non-experts, 

even where non-experts possess good mathematical ability.  

The potential for divergence between the information preferences of experts and the 

understanding of information recipients is also highlighted by Bruine de Bruin and Bostrom 

(2013),who stress the need for experts to systematically examine the current state of their 
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intended information recipients’ knowledge prior to designing communications. Such 

‘mismatches’ between communicators and information recipients are not, of course, 

restricted to the flow of information from technical providers to non-technical users. Todini et 

al. (2005) – discussing the communication of uncertainty in the context of flood forecasting – 

highlight the divergence between the preferences of researchers (for highly parameterized 

models) and operational flood forecast users (for representations that facilitate the 

recognition of clear thresholds for action). 

While most users (or potential users) of seasonal to decadal climate predictions cannot be 

said to be laypersons in the strictest sense of the word, level of expertise and statistical 

knowledge is likely to vary amongst them. As will be further discussed in Section 3, semi-

technical recipients of uncertainty information (i.e. non-experts who possess some statistical 

knowledge) do not necessarily outperform non-technical recipients in tests of comprehension 

(e.g. Ibrekk & Morgan, 1987). Any difficulties that non-expert recipients of information have 

with interpreting uncertainty information may be additionally compounded by time limitations 

and competing demands. In their report on good practice in communicating 

uncertainties in environmental assessments Kloprogge, Sluijs, and Wardekker (2007) 

recommend the adoption of a ‘progressive disclosure of information’ strategy, 

whereby information regarding uncertainties is presented in custom made ‘layers’; 

with outer layers providing a non-technical summary and inner layers becoming 

progressively more technically detailed. They also stress the importance of a) ensuring 

that the uncertainty information is provided in a manner relevant to the intended recipient 

and their decision goals; b) placing information about the uncertainties most relevant to user 

decision making in those sections of reports most likely to be read (e.g. abstracts, 

summaries, conclusions, sections pertaining to key goals); and c) indicating which 

(potentially relevant) uncertainties were excluded from analysis. These sentiments are 

largely echoed in a recent report by the US Board on Population Health and Public Health 

Practice in their report, which stresses the importance of considering both the expertise of 

one’s audience and the phase of decision making in which information will be used 

(Environmental Decisions in the Face of Uncertainty, 2013). 

Conceptualising the movement of climate information from initial scientific knowledge to use 

in adaptation strategies as a ‘process chain’ Stoverinck (2011) notes that, as one moves 

from projection to use in adaptation, information is passed from a group of users comprised 

mainly of scientific experts to user groups containing a large proportion non-experts. 

However, in a content analysis of documents coming from various points in the ‘process 

chain’, she found that documents placed later in the chain sometimes underplayed  

uncertainties emphasised at earlier points in the chain, or failed to discuss uncertainties 

associated with projections at all. As previously noted such failures to effectively convey 

uncertainty threaten both organisational planning and trust in communicators.   

3.2.6. Heuristics and biases 

When making judgements as to how to respond to a situation decision makers may not 

always have the time, capacity or inclination to perform a full systematic analysis of the 

available information.  The word heuristic is widely used in the judgement and decision 

making literature to refer to simple ‘mental shortcuts’ or ‘rules of thumb’ that may be used in 

lieu of more cognitively demanding processes in choice and judgement (e.g. Gigerenzer & 

Goldstein, 1996; Kahneman, 2011). The employment of these does not necessarily lead to 
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poorer decisions. Indeed, it has been argued that correctly extracting the essential ‘gist’ of 

an item of information is more important to accurate interpretation than being able to recall 

its verbatim characteristics (e.g. Reyna, 2008). However, a number of cognitive biases have 

been identified that may adversely influence judgement when individuals are faced with 

uncertainty. Many of these have been examined within the context of psychological and 

economic experiments. However, their specific relevance to the communication of climate 

and information has been noted (e.g. Nicholls, 1999). Listed below are a set of heuristics 

and biases that may potentially impact upon the interpretation and usage of information 

regarding uncertainty in climate predictions 

 Ratio bias effect 

Also known as denominator neglect, the ratio bias effect is a systematic tendency to respond 

differently to ratios represented with larger numbers (e.g. 100 in 1000) to logically equivalent 

ratios represented with smaller numbers (e.g. 1 in 10) (e.g. Denes-Raj & Epstein, 1994). 

This bias has the potential to influence judgement of any frequency-based representation of 

probability that does not make use of consistent denominator information. For instance, if 

denominators are neglected, a ‘40 in 100’ chance of above average winter temperatures 

would be interpreted as more likely than a ‘4 in 10’ chance of the same. While this effect 

would not perhaps be anticipated amongst those recipients of climate information who 

possess statistical expertise, it has been observed amongst educated populations (e.g. 

Peters et al., 2006). This bias may be circumvented by the use of: a) consistent 

denominators; or b) a percentage format.   

 Base rate neglect 

It has frequently been observed that individuals faced with conditional probabilities may 

neglect base rates (e.g. Goodie & Fantino, 1996; Hoffrage & Gigerenzer, 1998). To borrow a 

hypothetical illustration from Nicholls (1999): if a model that is accurate 90% of the time 

predicts that a drought will occur in a region where there is historically a 10% chance of 

being in drought, then (assuming that prior probabilities remain constant) there is both a 9% 

chance of the model delivering a hit (90% chance of the model correctly predicting a state 

that occurs 10% of the time) and a 9% chance of the model producing a false positive (10% 

chance of the model incorrectly rejecting a state that occurs 90% of the time) (see Table 3). 

However, a forecaster may struggle to convince a forecast user that the actual likelihood of a 

drought occurring at the location is just 50%.  
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Table 3 Likelihood of hit, miss, false alarm, and correct non-detection for a forecasting 
system with 90% accuracy predicting an event (drought) with a 10% likelihood of occurring 

 Drought observed Drought not observed Total 

Drought predicted Hit 

9% 

(90% chance prediction 

correct * 10% chance 

drought will occur)  

False Alarm 

9% 

(10% chance that 

prediction is wrong * 

90% chance that 

drought will not occur) 

 

18% 

Drought not 

predicted 

Miss 

1% 

(10% chance that 

prediction is wrong * 

10% chance that 

drought will occur) 

Correct non-detection 

81% 

(90% chance that 

prediction is correct * 

90% chance that 

drought will not occur) 

 

82% 

Total 10% 90%  

 

The forecast example used here is of course deterministic rather than probabilistic and 

assumes both a) an unchanging climate; and b) an unrealistic forecasting system that 

produces misses and false alarms at an identical 10% rate relative to observations. 

However, it serves to illustrate how prediction users with less statistical experience may 

struggle to integrate reliability and skill information with model output. 

 Framing 

This is a bias whereby the manner in which information is ‘framed’ (e.g. as a gain versus 

loss, or ‘event occurring’ versus ‘not occurring’) influences choice or judgement. This may 

lead to inconsistent responses to objectively identical information (Tversky & Kahneman, 

1981). For instance, ‘70% chance of above average rainfall’ may be judged differently than 

‘30% chance of average or below average rainfall’. Presenting both ‘probability of event’ and 

‘probability of not-event’ is recommended as a way to counter this issue (e.g. (D. 

Spiegelhalter, Pearson, & Short, 2011). Indeed, current IPCC AR5 guidelines explicitly 

instruct authors to strive to avoid framing effects (Mastrandrea et al., 2010).  

 Availability 

The availability heuristic refers to a tendency to base judgements regarding likelihood and 

magnitude on salience and the ease and ‘availability’ with which examples of an event come 

to mind (e.g. Slovic & Fischhoff, 1977; Tversky & Kahneman, 1973). For example, drought in 
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a particular locale may be perceived as more likely if instances where this has previously 

occurred come easily to mind (regardless of what present meteorological indicators 

suggest). 

 Probability weighting 

This term refers to a tendency for those making judgements and decisions to subjectively 

weight linear increments in probability in a non-linear fashion, with sensitivity decreasing as 

probabilities move away from certainty (e.g. (Kahneman & Tversky, 1979). For instance, the 

difference between a 0 and 5% chance of an event occurring will be perceived as 

subjectively larger than the difference between a 50% and 55% chance of said event 

occurring. 

 Overweighting of new information 

The tendency to give new information undue ‘weight’ when making judgements has been 

observed amongst technical users of hydrological forecasts (Kahneman & Tversky, 1979). It 

would seem plausible that this bias might also be observed amongst both technical and non-

technical users of other types of forecast information.  

 Confirmation bias 

Recipients of information may seek out or attend more to information that supports existing 

practices or judgements, while downplaying disconfirming evidence (see for instance 

(Bazerman & Moore, 2012) for discussion). Hence, information regarding prediction 

uncertainty may be neglected by those who favour the method of prediction being used, but 

focussed upon by those who do not (Vaessen, 2003); see (Kloprogge et al., 2007), for 

English summary). Similarly, the output of new models may be favoured when they ‘confirm’ 

prior beliefs, but disregarded when they do not. In the domain of seasonal to decadal 

forecasting, one might anticipate confirmation bias to occur when users hold strong pre-

existing beliefs regarding future weather and climate states. 

 Bounded rationality 

As previously mentioned, reliance on simple rules of thumb is not necessarily a maladaptive 

response to complex situations. As Simon (1957) points out, consistently employing 

expected utility analyses for every decision that one makes would be impossible.  

In the context of European flood forecasting it has been observed that at least some 

specialist users and risk manager wish to receive information in a manner that facilitates 

straightforward Act/Don’t Act decisions (see for instance (Demeritt et al., 2010; Todini et al., 

2005). On a similar note, in action research with Australian farmers, McCown and colleagues 

found that users of an analytic interactive tool for simulating possible planting outcomes in 

different conditions tended to use it to develop ‘intuitive’ If/Then responses (McCown, 2012; 

McCown, Carberry, Dalgliesh, Foale, & Hochman, 2012).  

On a related noted, responses to a recent survey conducted with EUPORIAS stakeholders 

and other interested organisations also indicates that a large proportion of respondent 

organisations would like to receive information in a manner that facilitates Yes/No decision 

making; although they may wish to receive more comprehensive data in addition to this.  

The question of how uncertainty information can best be integrated into 
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representations that facilitate the identification of appropriate thresholds for action 

(where these are desired) would thus seem to be of some importance. 

 

Key Points: General issues in communicating confidence and uncertainty 

 

 Ambiguity aversion means that information recipients may prefer to receive clearly 
defined magnitudes and likelihoods to ranges and confidence levels. However, failing 
to provide information about uncertainties can lead to false perceptions of certainty 
and be detrimental to both safety and trust in information providers. 
 

 Organisations are likely to vary in both their tolerance for uncertainty in seasonal to 
decadal climate predictions and the level of detail regarding uncertainty they require. 
Methods of representing uncertainty that incorporate institutional thresholds for action 
can facilitate the use of forecast and projections.  

 

 The information presentation preferences of end-users may not always match those 
of information providers. Such mismatches must be addressed. 

 

 As experience of using both climate predictions and statistical information is likely to 
vary considerably amongst the end-users of seasonal to decadal climate forecasts, it 
is important to keep in mind firstly, that not all users may be familiar with certain 
statistical concepts (e.g. confidence intervals, pdfs); and secondly, that experts and 
non-experts users may focus on different aspects of the information being 
communicated (e.g. quantitative data versus qualitative evaluative categories). 

 

 When it comes to interpreting information about uncertainty there are a number of 
thought biases that have the potential to lead to the neglect or misinterpretation of 
important information. These may affect both technical as well as non-technical users 
of information. When designing methods of communicating uncertainty one must take 
into account (and strive to mitigate) the potential for framing effects and other 
cognitive distortions.  

 

 

3.3. Representing uncertainty 

When communicating uncertainty to a recipient one is faced with the matter of how best to 

represent the information. As Stephens et al. (2012) note a communicator may face trade-

offs between richness (i.e. level of detail and resolution), robustness (i.e. accuracy of 

deterministic predictions, reliability of probabilistic predictions, and the appropriate reflection 

of skill) and salience (i.e. comprehensibility and usability). The distinction between 

robustness and level of detail is stressed by Dessai, Hulme, Lempert, and Pielke (2009), 

who – writing with respect to longer term climate adaptation – argue that unwarranted 

precision may lead to poor adaptation decisions. This sentiment is echoed in the domain of 

health risk communication by Nelson, Hesse, and Croyle (2009), who advise against the use 

of unnecessary detail when reporting numeric values (e.g. reporting values to several 

decimal places when a whole number would be sufficient). It should however be noted that 

the manner in which more highly specified numeric values versus less highly specified 
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estimates of likelihoods and outcomes are perceived by decision makers does not yet 

appear to have been systematically tested.  

In order to provide greater detail a communicator may provide more information (or 

more varied representations of the same information). However, in doing so they may 

contend with the problem of cognitive overload. That is to say that when presented with a 

high volume of information people may not have the capacity to process all of it, or identify 

the most important features, and thus become overwhelmed or ‘overloaded’  (see Nelson et 

al., 2009), for review). In addition to this, information recipients – and indeed information 

providers – may be subject to certain cognitive biases.   

The following three subsections will focus on the various ways in which uncertainty 

can numerically, verbally and visually represented. It is, of course, recognised that this 

distinction is somewhat artificial, as these are frequently combined in various ways. For 

instance, calibrated language may be presented with corresponding numeric ranges. Graphs 

and other visual representations may be appended with verbal descriptions or numeric 

tables. However, for the purposes of discussing the individual consideration associated with 

each form it was felt that this division – while artificial – is pragmatically justifiable. 

3.3.1. Numeric  

3.3.1.1. Likelihood format 

The question of how to best present numeric information to recipients is one that has long 

been a point of interest in the judgement and decision making literature. Evidence strongly 

suggests that the manner in which numeric information is interpreted can be strongly 

influenced by the format in which it is presented: that is to say, whether it is presented in a 

percentage, ratio (also referred to as ‘frequency’) or standardised (i.e. 0 to 1) format. Slovic, 

Monahan, and MacGregor (2000) for instance observed that even medical professionals 

rated a fictitious psychiatric patient as posing a greater danger when their estimated risk of 

committing a violent offense was described in frequency rather than percentage format. It 

has been proposed that humans are innately better equipped to utilise likelihood information 

presented in the form of natural frequencies (e.g. “out of every 1000 cases similar to yours”) 

(e.g. Gigerenzer, 2003). Indeed, it does appear that presenting conditional probabilities in 

frequency form reduces base rate neglect (e.g. Gigerenzer & Hoffrage, 1995). 

However, evidence from the field of weather forecasting has indicated that, when 

receiving probabilistic forecasts, members of the US public both prefer percentage based 

representations to frequency formats (Morss, Demuth, & Lazo, 2008) and better understand 

then (Joslyn & Nichols, 2009). As Stephens et al. (2012) note, communicators cannot 

automatically assume that a format that works well in one context will function as well in 

another. When contrasting forecasts of potential future weather and climate events to 

predictions of health outcomes, it is perhaps understandable that such differences may 

arise. It would seem plausible that being prompted to imagine 1000 patients like oneself may 

lead to a more concrete and salient mental representation than being prompted to imagine 

1000 days like tomorrow. It is also worth noting that in the previously mentioned Work 

Package 33 user needs survey a strong majority of respondents indicated a preference for 

the representation “30% chance of rain” over the structurally identical “3 in 10 chance of rain” 

and “.3 chance of rain”. 
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3.3.1.2. Interpreting probabilistic forecasts 

The extent to which those without technical or statistical expertise can effectively use 

information regarding forecast uncertainty is a manner that has generated considerable 

interest in the field of probabilistic weather forecasting. Although research conducted in this 

area has typically focussed on members of the public rather than operational users, this 

work would seem to have relevance for the communication of information regarding climate 

predictions to users without a statistical background. 

 On a positive note, recent research conducted with the US public suggests a) that 

those presented with probabilistic forecasts were more likely to take appropriate action than 

those presented with deterministic ones (Joslyn & LeClerc, 2012); and b) that people infer a 

degree of uncertainty into purely deterministic forecasts (Morss et al., 2008). Hence, it would 

appear that non-technical recipients of meteorological information can effectively utilise 

probabilistic information to make appropriate decisions. However, it has been noted that 

many people make reference class errors when presented with such forecasts (e.g. 

Gigerenzer, Hertwig, Van Den Broek, Fasolo, & Katsikopoulos, 2005). This is to say that a 

70% chance of precipitation may be misinterpreted to mean that it will rain over 70% of a 

particular area, or that 70% of weather forecasters agree that it will rain tomorrow, when 

what is actually intended is that there is a 70% chance that rain will occur in a specific area, 

during a specified time period. While it has been argued that a complete, normatively correct 

understanding of the information presented may not always be a barrier to appropriate 

adaptive action (see (Handmer & Proudley, 2007), for discussion), it may lead people to 

make decisions they would not have otherwise made.  For instance, in a hypothetical 

protective action task Morss, Lazo, and Demuth (2010) found that participants who believed 

that probability of precipitation estimates referred to ‘percentage of time’ it would rain had a 

lower threshold for taking (costly) protective action. Hence, when it comes to communicating 

measures of likelihood to those using said information for organisational planning and 

decision making, the importance of ensuring that it is made clear what said likelihoods refer 

to should be stressed. Again, many users and potential users of seasonal to decadal climate 

predictions have a high level statistical understanding, and will thus be more likely to 

interpret simple probabilistic information as intended. However, it is important to recognise 

that not all may have the same experience of working with probabilistic forecasts and 

prediction. It is also possible that even those with greater statistical understanding may make 

reference class errors when representations differ from those that they are used to. 

3.3.1.3. Conveying uncertainty through numeric ranges 

Probabilistic forecasts of the kind discussed above typically feature point estimates without 

any indication of dispersion. While such representations may be considered suitable in some 

contexts (e.g. weather forecasts provided for public consumption), they are unlikely to be 

appropriate in situations where a) dispersion is high; and b) small probabilities of extreme 

events of concern. They may also mislead users into believing that forecasting systems offer 

more certitude than they do. 

One way of communicating dispersion (or spread) in estimates of likelihood and 

magnitude is of course through the use of numeric ranges (e.g. 30-40% chance of rain 

tomorrow) rather than point estimates (e.g. 35% chance of rain next week). The question of 

how non-technical and less statistically experienced users perceive and utilise numeric 

ranges versus point estimates is one that has drawn interest in various fields. In the area of 
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health findings have been inconsistent. In one study involving a hypothetical treatment 

scenario Longman et al. (2012) found that participants presented with range estimates 

demonstrated lower understanding and higher perceived risk. In this study participants 

presented with large ranges also attributed less credibility to information providers. 

On the other hand, in a similar study concerning hypothetical personalised cancer risk 

estimates, Han et al. (2011) found that presenting ‘ambiguity’ in likelihood estimates as a 

numeric range increased worry but had no main effect on perceived risk. In both instances 

‘ambiguity aversion’ was cited as a reason for differences between those presented 

with ranges and those presented with point estimates.  

As previously stressed however, responses to information regarding uncertainty in a context 

such as health may differ from those in response to climate predictions. Indeed, in studies 

examining responses to weather forecasts, findings have been somewhat more supportive 

of the ability of non-technical recipients’ ability to adaptively utilise uncertainty information in 

the form of ranges. Roulston, Bolton, Kleit, and Sears-Collins (2006) found that providing 

participants with information regarding a temperature forecast’s error range improved 

performance on a hypothetical road salting task.  Findings obtained by Joslyn and Savelli 

(2010) meanwhile suggest that the US public anticipate bias in existing probabilistic 

forecasts (even in instances where it is not warranted). Joslyn and Savelli thus argue that 

the provision of specified ranges around probabilistic forecasts may be necessary to 

counteract this. It should not however be assumed that the provision of numeric ranges to 

indicate uncertainty will necessarily lead to uniform utilitarian responses. In a hypothetical 

cost/loss task (where participants must indicate whether they would choose to take a costly 

precaution in order to reduce the impact of an even more costly potential threat), Morss et al. 

(2010) found that participants responded differently to scenarios featuring potential damages 

from frost and damages from flooding, despite the expected value and uncertainty structure 

remaining constant.  

Key Points: Numeric representations of uncertainty 

 

 While it is helpful to examine work conducted in other fields it should be kept in mind 
that the best representations of uncertainty to use in other areas (e.g. health and 
finance) may not be the best to use when it comes to seasonal to decadal climate 
predictions. Thus, recommendations to use frequencies rather than percentage 
representations of probability made in other domains may not be useful when it 
comes to communication climate predictions. 
 

 While ambiguity aversion with respect to the presentation of range versus point 
estimates has been observed in certain fields, research examining the interpretation 
of probabilistic weather forecasts suggests that non-technical users can effectively 
utilise probabilistic information presented as numeric ranges – though their decision 
making may not be indicative of a ‘normative’ cost/loss trade-off. 

 

 

3.3.2. Verbal 

The use of verbal descriptions to convey uncertainty regarding likelihood has been 

suggested as one way to circumvent the problems posed by variations in probabilistic 
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understanding and lack of precision in numeric estimates. The IPCC AR5 guidelines, for 

example, provide detailed instructions for the use of calibrated language to describe both 

likelihoods and level of confidence (amount of evidence and level of consensus) 

(Mastrandrea et al., 2010). Work in other domains, such as health suggests that providing 

verbal ‘evaluative categories’ can aid the comprehension and decision making when numeric 

information proves difficult to evaluate (e.g. Peters et al., 2009).  However, as will now be 

discussed, caution should be taken when utilising verbal likelihoods in communication. 

3.3.2.1. Verbal expressions of likelihood 

One issue is, of course, that different individuals may interpret probabilistic terms such as 

‘likely’ and ‘unlikely’ in markedly different ways. Budescu, Broomell, and Por (2009), for 

instance, found that participants presented with statements extracted from the IPCC’s Fourth 

Assessment Report AR4 (IPCC, 2007), along with the verbal likelihood descriptors used in 

said report, demonstrated high variability in their estimates of probability. Although this was 

lower for those participant provided with accompanying numeric information that which 

probabilistic ranges were covered by phrases such as 'likely' or 'unlikely'. There is also 

evidence to suggest that people conflate verbal estimates of likelihood with representations 

of risk (i.e. a composite of magnitude and likelihood rather than just likelihood). Findings 

obtained by Patt and colleagues suggest that the interpretation of verbal statements 

regarding likelihoods can be influenced by a) the perceived severity of an event (Patt & 

Schrag, 2003); and b) whether one is being asked to act as a communicator or recipient of 

information (Patt & Dessai, 2005). Disparity between the intentions of communicators and 

the perceptions of users has also been observed with communications concerning over the 

counter medicines. Berry, Raynor, Knapp, and Bersellini (2004) found that, when presented 

with terms such as ‘common’ and ‘rare’, members of the public considerably overestimated 

the possibility of experiencing adverse side effects. 

Keeping the above in mind, general recommendations made with respect to the 

communication of verbal likelihoods include:  

 Using the same stem (e.g. very likely, likely, as likely as not, unlikely, very unlikely) 

for all terms within the scale in order to reduce (though not eliminate) variability in 

interpretation (Lipkus, 2007) 

 Presenting numeric ranges each time verbal likelihoods are utilised, with the size of 

the range indicating the degree of uncertainty regarding the likelihood in question 

(Budescu et al., 2009) 

 Establishing, prior to use, that the scale used reflects the perceptions of the intended 

users as far as possible (e.g. Berry et al., 2004) 

3.3.2.2. The segregation of confidence and likelihood 

As previously noted, current IPCC AR5 guidelines specify that (numeric and verbal) 

estimates of likelihood should be segregated from (verbal) summaries of ‘confidence’ 

(though high confidence should be assumed if a full probability distribution is provided). In 

the IPCC AR4 levels of ‘confidence’ were assigned numeric values, but these were later 

dropped on the grounds that they may this lead to confusion between ‘confidence’ as 

defined in the report (i.e. a composite of robustness of evidence and consensus amongst 

experts) and ‘statistical confidence’. Similar schemes for rating evidence and consensus in 
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the health domain are also in use (see Han, 2013). The U.S. Preventive Services Task 

Force (2008) uses a three point ‘low’, ‘medium’ and ‘high’ scale to denote “Certainty 

regarding net benefit”. The Grading of Recommendations Assessment, Development and 

Evaluation (GRADE) Working Group segregates (qualitatively ranked) quality of evidence 

from strength of recommendation (Balshem et al., 2011). This separation of different sources 

of uncertainty is, of course, done to enable greater transparency and comprehension. 

However, to the author of this review’s knowledge, the manner in which these scales are 

interpreted by information recipients has not been systematically tested.  

As Risbey and Kandlikar (2007) point out, one potential problem with segregating 

estimates of likelihood from estimates of strength of evidence and consensus, is that they 

cannot be fully separated on a conceptual level. To express ‘near certainty’ with ‘low 

confidence’ seems paradoxical. In response to this criticism, directed at earlier reports, 

guidelines for IPCC AR5 state that where low or very low confidence exists likelihood 

information should not be provided.  

3.3.2.3. Linguistic uncertainty 

Another challenge faced by those wishing to communicate information verbally is the 

potential for what Carey and Burgman (2008) have termed ‘linguistic uncertainty’. That is for 

uncertainty about the meaning of a communication to arise as a result of the ambiguity 

(possibility for multiple interpretations of the same word), vagueness, under-specificity or 

context dependence of the language used. This problem has been recognised in a number 

of diverse domains including weather forecasting (e.g. Handmer & Proudley, 2007), 

hydrology (Demeritt et al., 2010), health (Politi et al., 2007), food safety (Lofstedt, 2006), 

fisheries management (Hauge, Nielsen, & Korsbrekke, 2007), toxicology and engineering 

(Christensen, Andersen, Duijm, & Harremoës, 2003). Of particular relevance is the 

persistent observation that a large proportion of US and Australian recipients of probabilistic 

weather forecasts misunderstand what probability of precipitation estimates refer to (e.g. 

Hadmer & Proudley, 2007; Gigerenzer et al, 2005; Morss et al. 2008). This is to say that a 

“70% chance of rain tomorrow” may refer be taken to refer to a temporal (i.e. rains for 70% 

of the day) or spatial (i.e. rains over 70% of the area described) quality rather than a 

probabilistic one (i.e. it will rain on 70% of all days like tomorrow) because the ‘reference 

class’ has not been specified. Hence, an individual may understand what “70%” as a ratio 

means without correctly identifying the event it pertains to.  

As Christensen et al. (2003) point out, terminology regarding uncertainty varies from field to 

field and it may not be possible to create a standardised set of terms. However, it is 

important that terms should be clearly defined within the context in which they are being 

utilised. 
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Key Points: Verbal representations of uncertainty 

 

 Representing uncertainty verbally using calibrated language (e.g. very likely, likely, 
unlikely) can lead to differences in the way in which likelihoods are interpreted by 
information recipients. Evidence suggests that problem may be reduced by 
consistently including numeric ranges with each use of such language (as oppose to 
providing a single table of definitions). 
 

 In presenting information about uncertainty to end users one should strive to reduce 
'linguistic uncertainty' by clearly defining the terms one is using. This is especially 
important in the context of seasonal to decadal climate forecasts and projections 
where the phraseology used by information providers may have different meanings to 
end-users. 

 

 

3.3.3. Visual and audio representations 

A wealth of visualisations are available to those seeking to communicate information 

regarding uncertainty to  recipients of varying levels of technical expertise; ranging from 

relatively simple bar and pie charts to elaborate interactive tools. Nelson et al. (2009) advise 

those seeking to visually communicate information to take into account the perceptual 

processes of proximity, continuation and closure (Wertheimer, 1938). Proximity is the 

propensity to “perceive items that are close to each other in the visual field to be related in 

some way” (p125); a process that can facilitate comparison if the items to be compared are 

placed close together in an ordered fashion (see also (Hibbard & Peters, 2003). Continuity 

refers to “the eye’s tendency to follow lines and directions implied by separate elements of 

the visual field” (p 126); with Nelson et al recommending that – when constructing tables – 

decimal points be aligned and alternate lines shaded. Closure, is the tendency “for people to 

‘fill in’ missing information that is not specified in a presentation to make sense of the 

presentation as a whole.” (p 127); thus, the need for clear labelling that eliminates the need 

to ‘fill in’ is emphasised. 

Again however, the question of which precise representation one should use is not one that 

has a simple answer. 

3.3.3.1. What is being communicated? 

The first question that a communicator may ask in considering how best to visually represent 

uncertainty regarding likelihoods or magnitudes is what the visualisation in question will be 

used for. Spiegelhalter et al. (2011) makes a number of recommendations for tailoring visual 

representations to the communication of uncertainty, including: the creation of multiple 

graphics for multiple users; the provision of part to whole comparisons; the avoidance of 

framing effects by presenting frequencies or percentages ‘with’ and ‘without’ the outcome 

being represented; informative labelling; the avoidance of “chart junk”; assessing the needs 

of the audience; and rigorously testing all visualisations prior to use.  

When it comes to the representation of simple quantities, it is generally held that bar 

charts are useful for facilitating comparison between magnitudes; pie charts, for enabling the 

highlighting of a particular proportion; and line graphs for displaying trends over time (see 
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Nelson et al., 2009, for full review). The notion that the different representations facilitate the 

extraction of different information also holds true for the depiction of more complex statistical 

information. In their seminal research on the subject of visual communication Ibrekk and 

Morgan (1987) observed that, when asked to identify the mean of a binomial distribution, 

simple confidence intervals (on which means were explicitly marked) elicited the greatest 

number of correct estimates; while probability density functions and cumulative density 

functions tended to erroneously elicit modal and median responses respectively. When it 

came to making comparisons between values however, cumulative density functions were 

found to outperform other representations. These observations were echoed in a recent 

series of investigations by Edwards, Snyder, Allen, Makinson, and Hamby (2012). On 

presenting participants with a range of risk management scenarios where Act/Don’t Act 

responses were required, Edwards and colleagues observed that participants were more 

likely to correctly identify mean values and take appropriate action when graphics rendered 

the correct response visually explicit (e.g. error bars depicting mean values; complementary 

cumulative distribution functions indicating when a threshold was crossed). These findings 

serve to highlight the importance of a) considering how a visual representation of uncertainty 

information will be utilised, and whether they render the most important and useful 

characteristics salient; and b) testing whether users interpret the information depicted in the 

manner that communicators intend. 

With respect to visually conveying information regarding uncertainty in weather 

forecasts, Roulston and Kaplan (2009) observed that participants presented with fan charts 

depicting statistical confidence in temperature forecasts performed better in a decision task 

than those presented with point estimates. S. L. Joslyn and Nichols (2009) meanwhile found 

that presenting US participants with pie charts depicting chance of rain versus chance of no 

rain reduced reference class errors. These studies were of course conducted with members 

of the public rather than those using forecasts in an operational context. However, it is worth 

keeping in mind that not all those using climate predictions in their work will necessarily have 

technical and statistical understanding above that of the general public. Indeed, in the recent 

Work Package 33 survey it was found that representations of spread, such as error bars and 

fan charts were less highly favoured by those reporting lower comfort with using statistical 

information (although it should be kept in mind that unlike Roulston & Kaplan the survey 

measured preference rather than performance). 

Of course, the representations discussed above suggest well defined distributions of 

likelihoods and magnitudes. This leaves the question of how second order uncertainty may 

be represented. It has been suggested that when uncertainty results from a lack of 

consensus or a dearth of evidence (IPCC AR5’s two components of ‘confidence’) shading, 

transparency and blurring may be used to convey this (see Spielgelhalter et al, 2011 for an 

example). As Politi et al. (2007) note, the efficacy of using such representations to 

communicate uncertain information does not appear to have been widely tested. However, 

as will discussed further in Section 3.4, recent work by Jupp, Lowe, Stephenson and 

colleagues have recently explored the way in which transparency (Slingsby et al., 2009) and 

colour saturation (Jupp, Lowe, Coelho, & Stephenson, 2012; Lowe et al., 2013; Slingsby et 

al., 2009) can be used to communicate first order uncertainty (ensemble distribution) and 

second order uncertainty (reliability and skill) in seasonal forecasts. 

The question of how resolution can be appropriately represented is also one that poses a 

challenge to communicators. For instance, the use of smooth contours on maps may create 
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the impression that a prediction provides greater spatial precision that it does. However, as 

Stephens et al. (2012) report, the use of blocky rather than smooth contours may render the 

information less salient (and thus less understandable) to end users. 

3.3.3.2. Familiarity 

Preferences for visual representation that are already familiar have been observed amongst 

recipients of information. The recent WP33 user needs survey, conducted with EUPORIAS 

stakeholders and other interested organisations, found a consistently strong positive 

association between existing use of visualisations and ratings of preference. This is also 

echoed in the recent findings of Daron and colleagues (2014) who, on examining responses 

to different methods of communicating uncertainty in climate projections, found that 

respondents tended to prefer a more familiar bar graph representation most highly over 

more novel visualisations. Meanwhile, in the domain of hurricane forecasting a survey 

conducted by the US NWS with members of the public meanwhile indicated that 

respondents preferred existing representations of the ‘cone of uncertainty’ in hurricane 

forecasts (Broad, Leiserowitz, Weinkle, & Steketee, 2007). This preference for familiar 

representations is not limited to non-technical users of climate and weather information, 

Pappenberger et al. (2013) for instance, observed that when a workshop group composed 

predominantly of hydrologists, meteorologists and flood forecasting experts were asked to 

design a format for the delivery of a 10 day discharge forecast many opted for familiar 

formats. 

Preference for familiar formats is not of course a negative thing in itself. However, 

greater familiarity may not always correspond with greater comprehension and usefulness. 

In their studies of graph interpretation, neither Ibrekk and Morgan (1987) nor Edwards et al. 

(2012) observed a consistent relationship between familiarity and performance. 

Nonetheless, if the necessary information can be accurately and coherently conveyed using 

a form familiar to and/or preferred by users then there would seem to be a clear case for 

utilising it. Again, the importance of fully testing visualisations prior to use should be 

stressed.   

3.3.3.3. Potential for misinterpretation 

As with numeric and verbal representations of uncertainty those that are visual in nature may 

not be interpreted in the manner a communicator intends. As previously mentioned, the 

results of Ibrekk and Morgan’s (1987) study indicated that the ‘highest point’ on a probability 

distribution is often selected as the mean. Evaluation of the manner in which US residents 

interpret the cone of uncertainty has shown that many people anchor on the track line and 

misinterpret the cone to represent the boundaries of the area that might be affected by a 

hurricane (e.g. Broad et al., 2007). 

The misinterpretation and misuse of graphical representations of uncertainty is not 

limited to non-technical and semi-technical users. Demeritt et al. (2010) for example 

observed instances of hydrology sector professionals stating a wish to follow single 

ensemble members on hydrological ensemble forecasts presented as spaghetti graphs. 

Also, commenting on the potential (mis)interpretation of spaghetti graphs, Dettinger (2005) 

notes that the structure of said diagrams may lead to misapprehensions regarding spread; 

with the eye being drawn to extreme upper and lower visual bounds, rather than the 

concentration of lines in more central areas. In cases where users are concerned with 

potential extremes then drawing attention to upper and lower limits may not pose a problem. 
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However, where overall distribution and measures of central tendency are of interest, users 

may struggle to extract this information from visualisations where it is not clearly depicted. 

The choice of whether to use minimum and maximum values or confidence intervals as 

upper and lower limits may also influence users’ interpretations of spread and likelihood, by 

inducing them to anchor on visible limits. 

In their analysis of climate adaptation documents Stoverinck and colleagues 

observed considerable inconsistency in the colours used to depict the direction predicted 

changes in temperature and precipitation in visualisations (Stoverinck, 2011; Stoverinck, 

Dubois, & Amelung). Given their use in other contexts, colours such as blue, red and green 

may evoke multiple pre-existing associations amongst information recipients. For instance 

blue may be associated with both ‘water’ and ‘cold’; red with ‘heat’, ‘stop’ and ‘danger’; green 

with ‘verdancy’ and ‘go’. Hence, this variation in ‘what colours mean’ may lead to 

considerable confusion and misunderstanding. Stoverinck et al. also critique the use of maps 

in communicating uncertainty in climate projections; arguing that they may inhibit the 

integration of information and render trends difficult to interpret. The importance of avoiding 

the selection of counterintuitive colouring on climate maps is also emphasised by Kaye, 

Hartley and Hemming (2012), who also stress the importance of considering a) colour-

blindness (i.e. avoiding red/green scales where possible); and b) the potential for the use of 

a large number of hues to render maps difficult to interpret. 

Once again, the importance of fully testing methods of visual communication must be 

emphasised. 

3.3.3.4. Context of use 

The context in which the information might be used should also be considered. When 

presented with uncertain information, both technical and non-technical recipients are faced 

with the challenge of integrating it with a) other sources of information; and b) current 

institutional practices (e.g. Demeritt et al., 2010). Hence, information that is not presented in 

a manner that facilitates this may not be used (or used inappropriately). As research with 

both those in the hydrology sector (e.g. Demeritt et al., 2007) and Australian 

agriculture (McCown et al., 2012), along with the findings of our recent user-needs 

study indicate,  end-users may wish to have it presented in a way that facilitates 

straightforward ‘yes’/’no’ responses to situations 

The capacity of decision makers to interpret and utilise graphical representations in 

an operational context may also be influenced by factors such as time pressure and 

cognitive load. For instance, in their study of graph comprehension, Edwards et al. (2012) 

observed that the addition of a time pressure manipulation decreased choice accuracy. 

Earlier writings on the subject of visual communication have also echoed this point. Lamberti 

and Wallace (1987) note that graphical displays should seek to minimise cognitive load and 

make use of symbols that are meaningful and easily discriminable in the particular context in 

which they are used.  While Lamberti and Wallace’s focus was on displays utilised in the 

field of military command decisions, it is a point that would seem to generalise to any context 

where decision makers may be under time pressure or overburdened with information from a 

multitude of sources. 
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3.3.3.5. Using sound to represent uncertainty 

While the bulk of this subsection has concerned itself with visual representations, it should 

also be noted the potential for sound to be utilised in communication of uncertainty is 

increasingly being explored (Brown & Bearman, 2012). In a recent study examining whether 

variations in pitch could facilitate the interpretation of uncertainty information in UKCP09 

climate projections2 it was found that those presented with sonification performed better on 

an interpretation task, and had faster response times than those presented with visual 

information alone (Bearman, 2011). This effect appears to have been strongest amongst 

those already familiar with UK CP09, possibly suggesting that this format could be of 

greatest use to more experienced users of climate information. Although given the 

complexity of the underlying information, it is also possible that a similar approach may 

facilitate the interpretation of less complex datasets amongst a broader range of users. 

                                            
2
 An example of how sound was utilised in this study can be at http://vimeo.com/17029358 
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Key Points: Visual and audio representations of uncertainty 

 

 In presenting information about uncertainty in seasonal to decadal predictions to end-
users, information providers may have to made trade-offs between richness (detail 
and level of specificity), robustness (accuracy or reliability) and salience (how clear 
and understandable information is). It is therefore vital to understand the information 
requirements of end-users. 
 

 The best visualisation to use in any given instance is likely to depend both on what 
being communicated and the context of use. Where an end-user has a particular 
threshold for action, visualisations that render the threshold salient are likely to 
facilitate understanding and usage. 
 

 Preference for a particular form of uncertainty representation may not always denote 
better understanding of (and ability to use) it. Information providers are thus faced 
with the challenge of producing representations that are both acceptable to end-
users and facilitate accurate interpretation.  

 

 When seeking to provide information about uncertainty to end users the context in 
which the information will be used should be taken into account. Factors such as time 
pressure could mean that end-users need to extract the 'gist' of information quickly 
and without extensive deliberation. The matter of how end-users wish to use 
representations is also important; some may require representations that explicitly 
facilitate Act/Don't Act decisions. 
 

 When designing visualisations care should be taken to reduce any confusion that 
may arise from choice of colour. This is especially important in the context of 
seasonal to decadal predictions due to strong pre-existing associations between 
colours and climate/weather events (e.g. red with heat and/or danger; blue with both 
cold and/or water). Ensuring that end-users are able to easily link colours to states is 
vital.  
 

 The use of sound in the communication of uncertainty may assist interpretation 
amongst some users. 
 
 

 

3.4. Current and proposed methods of visualising uncertainty in 

seasonal climate predictions 

There are a number of ways in which information regarding uncertainty in seasonal to 

decadal climate predictions can be visualised. What follows will be an overview and 

discussion of the types of representation both currently in use amongst climate service 

providers and those suggested for use. Four key areas will be covered: predictions 

represented using maps (3.4.1), predictions represented using graphs (3.4.2), visualisations 

for communicating reliability and skill (3.4.3); and decision aids (3.4.4). 

3.4.1 Maps 

Maps are one of the most frequently utilised ways of presenting seasonal climate 

predictions. In a recent survey conducted with EUPORIAS stakeholders and interested 

organisations, maps emerged as the most highly favoured format for representing 
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uncertainty in climate information. Given their capacity to display spatial information in a way 

that allows visual characteristics to be matched with real world locations, this is perhaps 

unsurprising. There are however a range of different way in which this format can be utilised 

to represent climate information at a seasonal to decadal timescale. 

3.4.1.1 Terciles, quintiles and two-category. 

Maps communicating seasonal climate predictions typically illustrate the extent to which 

predictions diverge from long term averages. One deterministic approach is to illustrate a 

best estimate of the extent to which a variable is expected to exceed or fall below the 

average (e.g. by degrees Celsius, millimetres of precipitation, wind speed mph, etc.) 

However, while representing predicted anomalies in this manner allows for estimated 

magnitude to be displayed, it does not permit uncertainty to be depicted in detail. Although a 

strippling effect can be used to denote regions where dispersion amongst ensemble 

members is low, providing an indication of how high agreement is (see for example (Kaye et 

al., 2012). 

To illustrate exactly how the distribution of ensemble members compares to past 

observations two-category, tercile or quintile representations can be used. Of these terciles 

are perhaps the most popular. To create tercile representations, past observations are split 

into three categories: upper tercile (33.3%), middle tercile (33.3%) and lower tercile (33.3%). 

The proportion of ensemble members falling each category is then used to represent the 

estimated likelihood (according to the model used) of the variable falling into these upper, 

middle and lower categories. Likewise, a two-category representations are based on a two 

way split in past observations (upper 50% and lower 50%), while quintiles utilise a five way 

split (each category representing 20% of past observations). Maps then visually depict the 

proportion of ensemble members falling into a given category using gradations of colour.  

The seasonal temperature maps depicted in Figures 2a - c below are taken from the 

Met Office website, which allows visitors to view seasonal predictions for a range of 

variables in the same format3.  

                                            
3
 http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/glob-seas-prob 
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Figure 2a-c Maps illustrating predicted likelihood of 2m temperatures falling into above average (a), 

near average (b) and (c) below average tercile categories. Reproduced from the Met Office website  

As is explicitly noted on the Met Office website, the visualisations represent raw data and 

should not be taken to constitute forecasts for a given area. However, they do illustrate one 

way of presenting uncertain information. The three maps represent the predicted likelihood 

that temperatures will fall into the upper, middle and lower tercile respectively. Here red hues 

are used to represent higher likelihoods, with the deepest red corresponding with the highest 

category of likelihood, while blues represent lower likelihoods (with deeper blues 

corresponding with lower likelihoods). The same information as a two-category map (e.g. 

predicted likelihood of temperature being above normal) and highest and lowest quintile (e.g. 

predicted likelihood of temperature falling into the highest or lowest 20% category). The 

benefit of representing terciles and quintiles in this way is that the predicted likelihood of the 

(a) 

(b) 

(c) 
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variable of interest falling each category can be presented. However, it also comes with the 

difficulty of multiple maps being required, thus potentially making comparisons more difficult. 

This form of representation also brings with it the question of how colours should be utilised 

to depict likelihoods. Using the same colour scheme for each map permits visual 

consistency, thus potentially facilitating comparison between maps. However, it may also 

confuse when the colours utilised have strong existing associations (for instance, when 

highly saturated reds are used to depict a high likelihood of lower than average 

temperatures). 

Tercile information may also be displayed on a single map. One way of doing this is to 

display the predicted likelihood of the ‘most likely tercile’ for each region covered. An 

example of this, provided by IC3, can be in Figure 3 below. Here red, yellow and blue scales 

are used to depict upper, middle and lower terciles respectively. This format requires a more 

complex colour-scheme, but enables a consistent use of colour for different variable 

magnitudes. In this case blue always corresponds with ‘lower than average’ wind speed.  

 

Figure 3 “Probabilistic forecast of most likely tercile for 10m wind speed (%).White colour indicates 

where forecasts probabilities of all 3 categories are below 40% and approximately equal. Transparent 

areas indicate where the observations did not match the forecast”. Visualisation and text provided by 

IC3. 

An extension of this visual approach is used by Lowe et al. (2012) in their visualisations for 

Dengue fever forecasts (Figures 4a - b). In this case however colour is determined by a set 

of three coordinates reflecting predicted probability of Dengue incidence rates falling into 

lower, middle and upper terciles, Hence, stronger shades of blue, yellow and red correspond 

with greater probability of incidence rate falling into lower, middle and upper tercile 

respectively. Saturation is also used here to display information gain relative to a reference 

forecast (e.g. how much the forecast differs from historical observation). 



 

EUPORIAS (308291) Deliverable 33.2 Page 35 
 

 

Figure 4 (a) Dengue fever incidence rate (DIR) forecast. Colour assigned to each region of the map is 
based on coordinates corresponding with predicted probability of DIR falling into the lower, middle or 
upper tercile. Saturation also denotes ‘information gain’ relative to a reference forecast (labelled with 
an X).  (b) Observed DIR represented as Low, Medium or High tercile. Figures reproduced from Lowe 
et al. (2012) 

 

Other ways of using a single map to present tercile information include superimpose bar 

graph representations of the proportion of ensemble members falling into upper, middle and 

lower terciles onto a map, or using glyphs where length corresponds with the predicted 

likelihood of a variable falling into a particular tercile category (Figure 5). By providing details 

about all three terciles these visualisations increase the amount of information about each 

region available to users. Whether this additional information is of benefit to users is likely to 

depend on the details of interest to decision makers (e.g. whether users wish to receive an 

overview of the likelihood of all states or simply information about possible extremes). 
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Figure 5 Tercile-based probabilistic precipitation forecast depicted using glyphs. The arm length of 

each glyph correspond to probability of upper, middle and lower tercile respectively (left, bottom and 

right arms). Hence, a longer right arm corresponds with greater predicted likelihood of lower than 

average precipitation. Image reproduced from Slingsby et al. (2009).  

http://www.gicentre.org/papers/gisruk09/climate.pdf. 

 

Each of the map styles discussed has benefits and limitations, and given the diversity of user 

needs and statistical knowledge there may not be an optimal format. More empirical 

research is however needed to determine which formats work best in which context 

3.4.1.2 Colour scheme 

As touched upon above, when constructing maps, or indeed any other form of visualisation, 

to represent climate information, it is important to consider both visual salience and pre-

existing connotations. Colour schemes featuring red and green may be inaccessible for 

those with colour-blindness, while the use of a large number of hues may render it displays 

confusing and difficult to interpret (e.g. Kaye et al., 2012). Kaye et al. also raise the point that 

where saturation is used to denote differences in likelihood or magnitude, subtle variations in 

shade may not be obvious when areas of the same hue are far apart.  

With respect to pre-existing connotations, red and blue in particular are colours that have 

strong associations with certain climate variables, with red being associated with heat and 

blue with both cold and water. Hence, a visualisation where blue corresponds with higher 

temperatures or lower precipitation may lead some users, especially those with less 

experience of using said visualisations, to misunderstand the information presented. The use 

of white may also be contentious, with some associating it with missing information, others 

with ‘middle range’, and others with ‘no signal’. This was an issue that arose in comments 
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made in the recent Work Package 33 user needs survey. As noted in the previous section 

however the fact that some colours have different connotations in different disciplines likely 

precludes the creation of a scheme that can be perfectly intuitive for all users.  

When presenting multiple maps, each representing a different measures or climate variable 

in the same, a question arises as to whether a single colour scheme for all. As previously 

noted, consistency may cause a problem when usage is counterintuitive. However, the use 

of a different colour scheme for each measure may confuse if many measures are being 

presented. Once again, this highlights the need for appropriate user testing.  

3.4.1.3 Temporal dimension 

While maps provide an excellent format for viewing information spatially, it is perhaps more 

of a challenge to incorporate a temporal dimension. One option is, of course, to present for 

different timeframes side-by-side or as a slide show that users may click through. Another 

method is to present change over time as an animation. This format has been piloted and 

discussed by Slingsby et al. (2009), who report a favourable response on the part of users. 

Although, as Slingsby et al. note, one concern with using animation in this way is that 

smooth transitions from predictions at one timeframe to the next may create the illusion of 

continuity. 

3.4.2 Graphs 

While maps enable spatial elements of information to be clearly and directly illustrated it is, 

as previously noted, a challenge to present temporal information in this manner. Likewise, 

maps do not offer a straightforward way to present ranges, confidence levels and other 

measures of dispersion (or ‘spread’). Such information may thus be more easily depicted in 

the form of graphs. Of the types of graph available for this purpose, some enable temporal 

continuity (e.g. spaghetti plots, fan graphs) while others depict timeframes discretely (e.g. 

probability density functions, cumulative density functions, error bars, box plots). In the 

recent EUPORIAS Work Package 33 user needs survey, both fan graphs and error bars 

received generally high favourability ratings. Although, it is worth noting that they were 

significantly less popular amongst those reporting lower comfort with statistics. 

3.4.2.1 Spaghetti plots 

Spaghetti plots are commonly used to depict the trajectory of all ensemble members over 

time. The examples in Figure 6 illustrate how they may be used to display predictions with 

low-to-moderate and high dispersion. As has previously been noted however, while they 

provide a clear indication of where extremes lie, they may render the overall distribution less 

visually salient (Dettinger, 2009).  
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Figure 6 Spaghetti plots illustrating low to moderate and very high dispersion. Examples provided by 

Jean-Pierre Ceron, Meteo France. 

3.4.2.2 Continuous confidence intervals and fan graphs 

Continuous confidence intervals and fan graphs provide a way of illustrating confidence 

levels over time in a continuous manner. In a fan graph different levels of colour saturation 

are typically used to depict the range of values covered by 50, 70, and 90% confidence 

levels (with some also indicating a 100% limit). In some visualisations just the upper and 

lower bounds of a 90 or 95% confidence interval alone are shown, with a line indicating a 

measure of central tendency. In Figure 7 below a fan graph is used to represent the spread 

of a climatological reference (i.e. historical observations) for a seasonal temperature 

forecast.  
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Figure 7 Example of a fan graph representing the range of a climate reference (i.e. historical 

observations) overlaid with boxplots representing range of a seasonal prediction. Visualisation 

provided by Jean-Pierre Ceron, Meteo France. 

More complex diagrams utilising the same underlying format may also be constructed. In 

Figure 8 below multiple areas of concentration are depicted on the vertical axis. This 

highlights the fact that the distribution has multiple peaks, an element that is obscured in the 

standard fan graph, creating the impression of a unipolar distribution. However, this increase 

in complexity may bring with it a loss in salience. Once again the issue of richness versus 

ease of understanding has to be considered. Those with good statistical understanding for 

whom the recognition of multiple peaks has operational use may find this level of detail 

helpful. On the other hand those with lower statistical knowledge, or those simply seeking to 

establish upper and lower thresholds, may find that it renders visualisations difficult to 

interpret. Another factor to consider is, of course, the degree of detail that can be reasonably 

supported by the forecasting system. A very high degree of detail may lead users to 

overestimate the level of resolution offered by the system. Once again, it is important to 

consider both user expertise and context of use. 
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Figure 8 “Anomaly temperature forecasts issued from ECMWF VarEPS/Monthly system” 

Visualisation and footnotes provided by Laurent Dubus, EDF. 

 

Of course, while fan graphs can be used to depict confidence levels continuously, other 

methods may be used to present them for discrete timeframes.  

3.4.2.3 Probability density functions 

When depicting the distribution of a single variable for a discrete timeframe probability 

density functions (pdf) and cumulative density functions (cdf) offer the greatest amount of 

detail and can facilitate the comparison of distributions (e.g. historical observations versus 

current prediction) . As previously discussed however, research suggests that users with low 

to moderate statistical experience may have difficulty in extracting certain information, such 

as measures of central tendency, from these representations when they are not explicitly 

marked (Ibrekk & Morgan, 1989). Nonetheless, they are commonly used by those with 

greater technical expertise and statistical knowledge. Figure 9 illustrates how pdf’s may be 

used to compare climate predictions for a given period with climatology. 
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Figure 9 “Individual weeks’ pdf of the 51-member forecasts (red curve), with forecast median (dash 

red line) and climatology (black dashed line)” Visualisation and footnote provided by Laurent Dubus, 

EDF 

3.4.2.4 Error bars, boxplots and dots 

Error bars are typically used to represent a single 90% or 95% confidence interval, with the 

mean marked as a measure of central tendency. Hence, the detail regarding the distribution 

is limited. Although, depending on the needs of the individual user, this level of simplicity 

may be desired. Boxplots contain more detail, indicating 50% and 95% (or 100%) confidence 

levels, with a measure of central tendency (usually the median) marked. Figure 8 above 

depicts a set of boxplots (representing predictions) superimposed on a fan graph 

(representing climatology). 

Dots may also be used to display the distribution of ensemble members for a particular 

timeframe, with each dot representing an ensemble member. This method is used in Figure 

10 and 11 below to illustrate the spread of ensemble members relative to the spread of 

historical (i.e. 30 year) observations. These visualisations, created as part of a suite of for 

UK contingency planners, use the y-axis to depict absolute measures (i.e. predicted and 

observed millimetres of precipitation) rather than anomaly. Figure 11 is a visually complex 

diagram, containing dot spreads and pdfs, both of which are superimposed on a background 

representing quintiles. Again, this raises the issue of the richness/simplicity trade-off. A rich 

and complex diagram is likely to be more useful those with greater existing statistical 

knowledge and graph literacy than those without. It is important to stress however that the 

UK Met Office provide detailed instructions (in both written and video form) as to how these 

visualisations can and should be used. Hence, the question of how much training users will 

be given with respect to utilising visualisations also needs to be asked. In contexts where 

more training can be provided, richer and less immediately intuitive representations may be 

more appropriate than in situations where less guidance is possible. 



 

EUPORIAS (308291) Deliverable 33.2 Page 42 
 

 

Figure 10 “3-month UK outlook for precipitation in the context of the observed annual cycle” 

Visualisation for contingency planners reproduced from the Met Office website 

(http://www.metoffice.gov.uk/publicsector/contingency-planners)   

 

Figure 11 “3-month UK outlook for precipitation in the context of observed climatology” Visualisation 

for contingency planners reproduced from the Met Office website  

(http://www.metoffice.gov.uk/publicsector/contingency-planners)   

https://outlook.leeds.ac.uk/owa/redir.aspx?C=4e142dfc95d44c8c8ea9e7d8864747e0&URL=http%3a%2f%2fwww.metoffice.gov.uk%2fpublicsector%2fcontingency-planners
https://outlook.leeds.ac.uk/owa/redir.aspx?C=4e142dfc95d44c8c8ea9e7d8864747e0&URL=http%3a%2f%2fwww.metoffice.gov.uk%2fpublicsector%2fcontingency-planners
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3.4.3 Reliability and skill 

This section has thus far predominantly focussed on methods of visualising likelihoods, 

magnitudes and dispersion in seasonal climate predictions. However, in addition to 

effectively communicating ‘first order’ uncertainty derived from model output, it is also 

important that measures of reliability and skill are appropriately conveyed. In the recent Work 

Package 33 survey a substantial minority of respondents currently using seasonal 

predictions indicated that they did not currently receive information as to how predictions 

compared to observations but would like to do so. A desire to receive information about how 

different models compared with one another was also expressed. This indicates a pressing 

need for information regarding reliability and skill to be clearly communicated. However, 

doing this in a manner that can be easily understood by all users may pose a challenge. 

Numerical measures of both reliability and skill may be calculated (e.g. as skill scores). For 

less technical users however interpreting them may be difficult unless evaluative categories 

and visual aids are also provided.  

3.4.3.1 Visualising skill and reliability using graphs 

One way of visually representing reliability is to plot prediction against observation on a line 

graph (e.g. Figure 12). Here a perfectly reliable prediction would form a straight 45o line. That 

is to say that where this perfectly reliable system indicates that there is a 60% chance of 

temperatures being lower than average, lower than average temperatures would occur 60% 

of the time that this prediction is made. The same information may also be plotted on a bar 

graph (Figure 13). Skill may be represented using similar formats, with the reliability of one 

prediction being plotted against a reference prediction.  

For those lower in statistical understanding or graph literacy however such formats may 

prove difficult to interpret. Likewise, those more familiar with determinist forecasts (where 

predictions are either correct or incorrect) than probabilistic ones may also initially fail to 

realise that where a prediction system assigns a 60% probability to the most likely tercile 

occurring, the most likely tercile should not be observed 100% of the time. Again, the need 

to ascertain where misunderstandings may occur and address them should be emphasised. 
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Figure 12 Reliability diagram plotting observed frequency against predicted probability. The grey line 

represents a hypothetical perfectly reliable forecast. Provided by Jean-Pierre Ceron, Meteo France. 

 

Figure 13 Reliability diagram plotting observed relative frequency against forecast probability. 

Provided by Jean-Pierre Ceron, Meteo France. 
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A visual comparison of predicted versus observed climate variables may be facilitated by 

overlaying a line (or dots) representing observations on a fan graph representing model 

predictions (i.e. the spread of ensemble members).  A similar format may also be used to 

compare the performance of several different models across a particular timescale (Figure 

14). Although it should be noted that in the latter case increasing visual complexity in this 

manner may make interpretation more difficult for less experienced users. Again, the trade-

off between increasing informational content and potentially reducing salience should be 

considered in view of both who the users are and the amount of information required to 

support decision making.  

 

Figure 14 River Flow Monthly Forecasts. A comparison of different types of probabilistic forecasts 

plotted against observations (represented by green dots. Visualisation provided by Laurent Dubus, 

EDF. 

3.4.3.2 Visualising reliability and skill using maps 

In addition to conveying predictions themselves, maps may also be used to convey 

information regarding a) how well predictions have matched observed climate (accuracy in 

the case of deterministic forecasts reliability the case of probabilistic ones); and b) how a 

particular model has performed comparative to climatology or another reference forecast 

(skill). This may be done using colour (Figure 15), transparency (Figure 16), or presenting 

maps detailing ‘prediction’ and ‘observation’/‘reference’ side by side (Figure 17, see also 

Figure 4b). No definitive guide as to which particular format works best is however available 

in the current literature. Once again, more research is needed to establish which visual 

representations of reliability and skill work best in which context. 
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Figure 15 “Spring 10m wind resource CR probability skill score (ECMWF S4, 1 month forecast lead 

time, once a year from 1981-2010)” Image and footnote provided by IC3. 

 

Figure 16 “Transparency used to indicate the skill (quality) of the forecast using the Brier Skill Score 

(BSS). High transparency indicates lower skill.” Image and footnote reproduced from Slingsby et al. 

(2009) 
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Figure 17 “Observed (left) and mean forecast (right) precipitation anomalies (red circles are negative 

anomalies, blue are positive – size of circle indicates magnitude of anomaly).” Image and footnote 

reproduced from Slingsby et al. (2009) 

 

3.4.4 Decision aids and user tools 

As discussed earlier in this review, some users of climate information may favour 

visualisations that a) explicitly indicate user-defined thresholds; and b) facilitate decision 

making. Received Operating Characteristic (ROC) curves provide one method of integrating 

organisational risk preference and tolerance for false alarms into the use of climate 

predictions by plotting true hits against false alarms at different levels of sensitivity (see 

Figure 18 for example of a temperature forecast presented in this way and Figure 19 for an 

explanation as to how ROC diagrams should be interpreted). Hence, as sensitivity increases 

the likelihood of both a true positive or false positive increases (generally in a non-linear 

manner). A 45o line on the graph would therefore represent a prediction system for which a 

positive signal has an equal chance of being a true positive or a false positive. Decision 

makers may thus choose the point on the curve that best reflects their tolerance for false 

alarms and false misses. Again however, those not already familiar with such 

representations may struggle to utilise them effectively. Indeed, the visual similarity between 

ROC curves and line graphs representing reliability measures mean that some may confuse 

the quite different method of interpretation needed to accurately extract the meaning (i.e. on 

a reliability graph a 45o line would indicate a perfect forecast, while on a ROC curve it 

indicates a forecast which returns as many false positives as it does true positives).  
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Figure 18  Example of ROC curves. Likelihood of a false alarm is plotted on the x-axis and likelihood 
of a true detection on the y-axis. Visualisation provided by Jean-Pierre Ceron, Meteo France. 
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Figure 19 Illustration of how the space on a ROC diagram should be read. At the bottom-left 

no warnings are ever given (i.e. no hits or false alarms), while at the top-right warnings are always 

given regardless of whether the event will occur or not. A score in the top-left would denote a perfect 

prediction system with a hit rate of 100% and a 0% false alarm rate. Along the grey line cutting 

diagonally across the diagram a warning is equally likely to denote a hit or a false alarm. In this 

instance the diagram depicts a deterministic forecast as a single fixed point. However, as can be seen 

in Figure 18, curves can be added to indicate a hit-to-false alarm ratio at different levels of sensitivity. 

Diagram reproduced from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

website 

(http://www.ecmwf.int/products/forecasts/guide/The_relative_operating_characteristics_ROC_

diagram.html) 

Of course, while ROC curves may prove difficult for less statistically experienced 

users, this underlying information regarding the ratio of false positives to false negatives may 

nonetheless be integrated with user risk preferences in more user friendly tools that facilitate 

specific decisions. Various tools for specifying the crossing thresholds or level of 

preparedness required exist. Some of these utilise a ‘traffic light’ system to indicate threat 

level or need for action. Examples of such systems include the Met Office’s 4 extreme 

weather warnings (Neal, Boyle, Grahame, Mylne, & Sharpe, 2013) and Meteo France’s 

vigilance maps5. Here level of threat (represented on a green to red traffic light scale) 

represents a measure of risk (potential magnitude of impact weighted by likelihood). 

Figure 20 below illustrates how a similar format can be used to translate probabilistic 

forecasts into actionable information in an operational context. For this hydrological forecast, 

the likelihood of river discharge exceeding a critical threshold is coded as green, yellow, 

orange or red, with the colours serving to provide a visual cue as to degree of 

preparedness/action required.  

                                            
4
 http://www.metoffice.gov.uk/public/weather/warnings/#?tab=warnings&regionName=uk 

5
 http://vigilance.meteofrance.com/ 

http://www.ecmwf.int/products/forecasts/guide/The_relative_operating_characteristics_ROC_diagram.html
http://www.ecmwf.int/products/forecasts/guide/The_relative_operating_characteristics_ROC_diagram.html


 

EUPORIAS (308291) Deliverable 33.2 Page 50 
 

 

Figure 20 Traffic light coding used to indicate likelihood of river discharge crossing critical threshold. 

Visualisation provided by Jean-Pierre Ceron, Meteo France. 

Recently a grid system for matching visualisations (and other information formats) to user 

needs has been devised by Meteo-France (see Figure 21 over page). Here visualisations 

may be selected depending on the particular information required. Such systems may 

represent a way of catering to a diverse range of users. 
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Figure 21 Analysis Grid. Reproduced from Chateigner (2013)
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Key Points: Current and proposed representations of uncertainty in seasonal climate predictions 

 

 Maps may represent probabilistic information in a number of ways (e.g. two-category 
maps, separate maps for different terciles/quintiles, maps depicting probability of 
most likely tercile, deterministic maps using strippling effects). However, the question 
of which formats are best understood and most useful to a range of end users 
requires further investigation. 
 

 When constructing maps and other visualisations one should carefully consider one's 
use of colour in order to avoid a) counterintuitive representations (e.g. blue 
corresponding with higher temperatures or lower precipitation); and b) the use of 
more hues than necessary. 
 

 Probability distributions and other spread may be communicated in a number of 
ways. The appropriate format to use will depend a) on whether a temporally 
continuous measure is desired (or appropriate); and b) whether users are concerned 
with potential extremes, central tendencies or more detailed distributions. 
 

 End users may struggle to accurately interpret complex visualisations without 
appropriate training. Hence, the question of whether training will be provided should 
be considered when developing visualisations. 
 

 More work is needed to establish how information regarding reliability and skill can 
best be communicated to end users. 
 

 Decision aids providing Act/Don't Act signals and thresholds for action based on a 
combination of model output and user risk preference may simplify use of 
predictions. Although care should of course be taken to ensure that such formats do 
not create a false sense of certainty. 
 
 

 3.5 Future directions 

Looking forward to future steps in Work Package 33, this review highlights both points for 

consideration when designing methods of communicating uncertainty in the context of 

seasonal to decadal climate prediction (Task 33.3) and questions to be addressed when 

examining their fitness for purpose (Task 33.4).  

 As touched upon in Section 3.2, the level of detail required by end users may vary 

from case to case: with some wishing for an outline of plausible scenarios and others a full 

statistical treatment of uncertainty. Institutions may also differ in their tolerance for 
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uncertainty; with some rejecting new information containing high 'ambiguity' regarding 

likelihoods and magnitudes. In the Task 33.1 user needs survey responses indicated that 

most respondent organisations had at least some tolerance for uncertainty. However, 

reported tolerance for false alarms varied considerably (see Taylor and Dessai, 2014, for full 

report). Preference for information formats that facilitate Yes/No decision making also varied 

amongst respondents. Hence, these differences in organisational preferences need to be 

taken into account when devising methods of communication. The findings of the T33.1 

survey also indicated that while many respondents were comfortable with using statistical 

measures of spread (e.g. confidence intervals and standard deviations) others were less so. 

Hence, the challenge of how probabilistic information can best be communicated to users 

with a range of statistical experience is one that should be addressed.    

As has previously been stressed, the importance of testing methods of information 

presentation before use is paramount. Thus, the efficacy of verbal, numeric and visual 

methods of presentation (and combinations thereof) in communicating uncertainty 

information should be established; as should any systematic biases that may lead to the 

misinterpretation of uncertainty information. Specific questions that should be examined 

include: 

 Are users’ preferred methods of receiving uncertainty information in this domain 

those that they interpret most accurately? 

 

 Do framing effects influence the interpretation of information in existing methods of 

presenting uncertainty information in S2D forecasts? If so, how can this be 

mitigated? (E.g. by presenting information in both ‘event’ and ‘non-event’ frames). 

 

 Where uncertainty language (e.g. ‘likely’, ‘unlikely’, ‘high confidence’, ‘low 

confidence’) is used, is it interpreted in the manner intended by the communicator? 

(E.g. do users interpret the phrase ‘likely’ to cover the same range of likelihoods as is 

intended?) Does presenting calibrated language with numeric and visual 

representations of likelihood and spread enhance comprehension? 

 

 How does the size of numeric ranges (displayed numerically or graphically) influence 

user perceptions of reliability, credibility and usefulness?   
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 To what extent do graph literacy and numeracy influence the comprehension of 

numeric and visual representations of uncertainty in seasonal to decadal climate 

predictions? Which visual and numeric representations are best comprehended (and 

perceived as most useful) by recipients possessing different levels of statistical 

knowledge?  

 

 How can information regarding reliability and skill be presented in a way that best 

facilitates understanding? Is this information better understood when it is presented 

separately from the probabilistic output of the prediction model, or when both types of 

information are integrated (e.g. using a visual cue such as transparency to indicate 

skill). 

 

3.6. Concluding remarks 

The review has drawn upon research in a diverse range of fields to provide an overview of 

how information regarding uncertainty can be disseminated and, of course, interpreted. The 

words ‘confidence’ and ‘uncertainty’ can be defined in a number of ways. Hence, if using 

these terms when communicating with the recipients of ‘uncertainty information’, it would 

seem to be important to clearly state what is meant by them. The problem of ‘linguistic 

uncertainty’ more generally is, as has been seen, one that must be confronted when 

communicating with information recipients. This is especially the case if one is seeking to 

convey likelihoods, magnitudes, level of evidence or consensus using verbal descriptors. 

Explicitly calibrating this language with numeric estimates is one solution to this difficulty, 

though this may not be suitable if the nature of the uncertainty in question cannot be readily 

quantified. Hence, the thorough (and context specific) testing of any such framework prior to 

use is thus strongly recommended. Likewise, the rigorous testing of how numeric formats 

and visual representations are perceived by users is vital to ensuring that a) information is 

understood; and b) framing effects and other potential biases are minimised. As users (and 

potential users) of S2D forecasts are likely to vary in terms of technical background and 

experience with probabilistic information, factors such as graph literacy and numeracy 

should be taken into account. A range of interesting visualisations for communicating first 

order and second order uncertainty in seasonal climate predictions exist. However, more 

systematic testing is needed to determine which formats suit which type of user, and 

whether new forms of representation (or adjustment to existing ones) can increase ease of 

understanding and reduce misinterpretation. 
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