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1. Executive Summary

This report presents a review of the literature concerning approaches to communicating
confidence and uncertainty, with the objective of informing best practice in seasonal-to-
decadal climate predictions. As issues pertaining to the communication of uncertainty
transcend disciplinary boundaries this review draws upon research conducted in a range of
fields, including: weather, climate policy, health and medicine, environmental risk
management, economics, experimental psychology, and engineering.

The review highlights a number of factors that are likely to impact on end-u s e
interpretation and usage of information concerning confidence and uncertainty in seasonal-
to-decadal climate and climate impact predictions. These include: ambiguity aversion, trust
in information providers, institutional protocol, technical expertise, level of precision, the type
of visualisation tool(s) used, and systematic thought biases.

Methods of presenting uncertainty information in numeric, verbal and visual formats are
discussed. Numeric presentations permit uncertainty to be formally represented as ranges
and confidence limits; but those users with less experience of using statistical information
may struggle to extract appropriate meaning from them. The employment of verbal
descriptors and evaluative categories may enhance the ability of these users to interpret
statistical uncertainty information, but providing these without accompanying numeric ranges
can lead to high variability in the way in which 'uncertainty language' is interpreted.

Visualisations provide a versatile way to display uncertainty information at varying levels of
complexity. For these to be developed to best effect, however, communicators must
consider a) what type of information end-users want; b) how they wish to make use of it; and
c) the context in which the information will be used. Various methods of visually
communicating uncertainty in seasonal climate predictions already exist. However, to date
there has been little systematic testing of how understandable, useful or open to
misinterpretation they are. The need to rigorously test methods of communication prior to
use, in particular when applied to seasonal-to-decadal climate predictions, is therefore
stressed and directions for future research outlined.

2. Project Objectives

With this deliverable, the project has contributed to the achievement of the following
objectives (DOW, Section B1.1):

No. Objective Yes No

Develop and deliver reliable and trusted impact
prediction systems for a number of carefully selected
1 case studies. These will provide working examples of X
end to end climate-to-impacts-decision making
services operation on S2D timescales.

Assess and document key knowledge gaps and
vulnerabilities of important sectors (e.g., water,

2 energy, health, transport, agriculture, tourism), along X
with the needs of specific users within these sectors,
through close collaboration with project stakeholders.
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Develop a set of standard tools tailored to the needs
3 of stakeholders for calibrating, downscaling, and
modelling sector-specific impacts on S2D timescales.

Develop techniques to map the meteorological
variables from the prediction systems provided by the
WMO GPCs (two of which (Met Office and
MeteoFrance) are partners in the project) into
variables which are directly relevant to the needs of
specific stakeholders.

Develop a knowledge-sharing protocol necessary to
promote the use of these technologies. This will
include making uncertain information fit into the
decision support systems used by stakeholders to

5 take decisions on the S2D horizon. This objective will X
place Europe at the forefront of the implementation of
the GFCS, through the GFCS's ambitions to develop
climate services research, a climate services
information system and a user interface platform.

Assess and document the current marketability of
climate services in Europe and demonstrate how
climate services on S2D time horizons can be made
useful to end users.

3. Detailed Report

3.1. Introduction

The clear and accurate communication of confidence and uncertainty in seasonal to decadal
climate predictions is vital if end users are to be able to utilise these predictions in a truly
informed manner. The question of how this information can best be conveyed is therefore
one of high importance to both the providers and users of climate predictions. It is not
however one to which a simple answer is immediately available. With end users inevitably
varying in goals, information preferences, statistical understanding, and technical expertise,
formats that suit one user may be perceived as overly complex (or overly simplistic) by
another. While a number of methods of communicating confidence and uncertainty in climate
information exist, to date relatively little research has empirically tested their efficacy specific
context of seasonal to decadal climate predictions. A larger body of research does however
exist with respect to the perception and communication of uncertainty in the context of a)
weather; b) longer term climate projections, and c) fields outside the domain of meteorology
and climatology. Hence, in examining existing approaches to communicating confidence
and uncertainty this present review will not only discuss research pertaining to the
communication of uncertainty in the context of climate and weather, but also findings from
the domains such as economics, medicine, environmental health, policy, and engineering.
Of course, as Stephens, Edwards, and Demeritt (2012) point out, best practice for
communicating information about uncertainties in one domain may not necessarily apply to
all others. For this reason, when discussing the findings of studies outside of the weather
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and climate domain, care will be taken to stress the nature of the context.

In the next section (3.2) general issues pertaining to the definition and reporting of
6confidenced and O6uncertaintyo6 wild.l be outlined.
various methods of presenting infaoarmaveobi abesgb
misunderstandings that may accompany them (3.3), before we turn our attention to existing

and proposed methods of visually communicating confidence uncertainty in the specific

context seasonal to decadal climate predictions (3.4). Finally, we conclude by outlining

directions for further research (3.5).

3.2. General issues in confidence and uncertainty

3.2.1. Defining confidence and uncertainty

One difficulty with wusing the terms O6uncertainty
future states of the world is that the terms are often used differently from case to case. In

certain contexts, they may be uhs ecdo ndfeisdcernicheed tshiem
being taken to mean 6l ow uncertaintyd. Alternat.i
Assessment Report (ARb5), 'confidence' may be treated as a very specific type of non-

certainty, encapsulating consensus and quality of evidence rather than estimated likelihood

(Mastrandrea et al., 2010). In addition to differences in formal definition, the terms may in
themselves carry different connotations, with o6c
and d6uncertainty 6Hemm,rthe choiee gfadcabulay ismot aesitral, though

this is seldom discussed.

Of course uncertainty itself can be classified in different ways and attributed to different
sources (see for example (Dessai & Hulme, 2004; Paté-Cornell, 1996; Spiegelhalter &
Riesch, 2011). While the word is often used as something of an umbrella term,
encompassing all forms and sources of non-certainty, more precise definitions are
sometimes utilised. Following Knight (1921), much of the work on economic decision making
and behavioural finance segregates6 deci si onsfromddeci siieck®d under unc
Under this classification system 6 r i corkcérns those situations where probabilities
are well-defined, while 6 u n ¢ e r tc@ncennt yhw€tances where there is either a lack of
explicit information or incomplete information about probabilities. A similar distinction
is drawn upon by Stirling (2007) who, in discussing risk policy, defines risk as a state where
the probabilities of potential outcomes can be clearly defined; and uncertainty where
probabilities cannot be assigned to potential outcomes. Stirling also identifies two further
categories of incertitude: ambiguity, where potential outcomes are contested and/or not
clearly defined; and ignorance, where both likelihoods and potential outcomes are
unknown. Stirling notes that according to this system of classification a hazard such as
flooding may fall into the category of risk if one assumes an unchanging climate; with
climatology providing the means to estimate likelihood and magnitude based on historical
observation. Under climate change however flooding falls into the category of uncertainty;
with past observations being less representative of present likelihood.
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Tablel St irling's four categories of Alncert

Risk Ambiguity
1 Probability of events 1 Probability of events
known known
1 Outcomes and impacts 1 Outcomes and impacts
of events well defined of events unknown or
disputed
Uncertainty Ignorance
1 Probabilities unknown 1 Probabilities unknown
or incomplete. 1 Outcomes and impacts
1 Outcomes and impacts of events unknown or
of events well defined disputed

This framework allows a distinction to be made between those instances where probabilities

alone are unknown and those where there is a lack of knowledge regarding outcomes and

impacts. However, it should be noted that this particular use of the term ambiguity differs

from the way it has been used elsewhere. For example Ellsberg (1990), who formally
identified the pheno me non of OG6ambiguity aversiond (see sub:c
term 6ambi gui t yid urncertairdygseeabove) étni g ht

fi .the quality depending on the amount, type, reliability, and unanimity of information, giving
ri se t o o ofedhfddendeengan estanate of relative likelihooddo ( p. 657) .

Indeed in much of the literature on judgement and decision making, the phrase ambiguity is
used synonymously with uncertainty in to refer to any scenario where information regarding
probabilities (or potential outcomes) is incomplete (see for instance (Tversky & Shafir, 1992;
Van Dijk & Zeelenberg, 2003). According to this conceptualisation, seasonal climate
predictions i or indeed any forecasting system that lacks perfect reliability i are ambiguous
in the sense that the models from which they are derived cannot capture every single factor
that may impact on the climate system. It should of course be kept in mind that these highly
specific definitions of uncertainty do not always match the way in which the term is used in a
more generally understood sense (i.e. to refer to instances where there is non-certainty
regardless of whether likelihoods are known or not). They do however permit a distinction to
be drawn between situations where probabilities are explicitly defined and those where they
are not. This split is also captured by the concepts of first order uncertainty and second order
uncertainty. Here, first order uncertainty is synonymous with probability, and is in keeping
with Knight's conceptualisation of risk. Second order uncertainty meanwhile is consistent
with EIlIl sbergbs notion of ambiguity, encapsul at]i
example (Vercelli, 1999). Hence, uncertainty pertaining particular prediction or forecast may
be decomposed into first order and second order components: first order being the likelihood
of a particular event occurring according to model outputs (e.g. distribution of ensemble
members); second order being the extent to which models actually capture reality.

This distinction is, to a degree, additionally reflected in that made between aleatory and
epistemic uncertainty (e.g. Paté-Cornell, 1996). In this taxonomy, aleatory uncertainty is that
which can be attributed to randomness (and thus be statistically well defined). Epistemic
uncertainty meanwhile refers to instances where knowledge is incomplete (due, for example,
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to errors in measurement and observation, neglected variables, disagreement between
researchers, model formulation). It has however been suggested that the concepts of
aleatory and epistemic uncertainty are not sufficient to capture all sources of incertitude. The
term human reflexive uncertainty is used by Dessai and Hulme (2004), to refer to the
reflexive response of humans towards uncertainty information (e.g. the potential for
behavioural changes made in response to climate change communication to impact on
future climate states). Politi, Han, and Col (2007) meanwhile identify perceived personal
relevance and information complexity as further sources of uncertainty on the part of
information recipients. Here a lack of certainty regarding future states (and optimal
responses) results from neither randomness nor limitations in scientific knowledge, but from
recipientsd ability (or | ack thereof) to
provided and meaningfully integrate it into their own decision making. Indeed end-users

6 c o mmo n usderstandir@ of terms such as confidence, uncertainty and ambiguity may
in themselves differ from those definitions used by scientists and information providers,
rendering interpretation more complex.

In addition to being attributed to different sources, different approaches to quantifying and
characterising uncertainty exist. A distinction is often drawn between Frequentist and
Bayesian (also known as Subijectivist) approaches to uncertainty. Frequentist probabilities
are those where a full probability distribution may be obtained from direct observation, and
are held to represent objectively quantifiable properties of the world given fixed underlying
parameters (though these may be subject to measurement error). With Bayesian
probabilities, values of formally unknown underlying parameters may be inferred from expert
belief and probabilistic estimates generated on the basis of said assumed parameters (see
for instance (Campbell, 2011) for discussion). As Campbell notes, the manner in which IPCC
AR4 and AR5 guidelines segregate

separate out subjective and frequentist elements of uncertainty (see Figure 1 and Table 1
detail s

bel ow for further cdtegoid®)s 0 s

6confidencebo

confidence

Evidence (type, amount, quality, consistency) -

High agreement High agreem:
1 Limited evidence | Medium evidence
=
g Medium agreement | Medium agreement
o Limited evidence Medium evidence Robust evidende:;
2
Low agreement Low agreement Low agreement
Limited evidence Medium evidence Robust evidence Confidence
Scale

Figure 1 fA depiction of evidence and agreement statements and their relationship to confidence.
Confidence increases towards the top-right corner as suggested by the increasing strength of
shading. Generally, evidence is most robust when there are multiple, consistent independent lines of

high-gual ity

Eigure cired wapt®m reproduced from: Guidance Note for Lead Authors of the

IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (Mastrandrea et al.,

2010)
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Table 2 Verbal likelihood scale set out in Guidance Note for Lead Authors of the IPCC Fifth
Assessment Report on Consistent Treatment of Uncertainties. Reproduced from
Mastrandrea et al. (2010)

Term Likelihood of outcome
Virtually certain 99-100% probability
Very likely 90-100% probability
Likely 66-100% probability
About as likely as not 33 to 66% probability
Unlikely 0-33% probability

Very unlikely 0-10% probability
Exceptionally unlikely 0-1% probability

Also incorporated into the AR4 and AR5 guidelines is an instruction that the level of
guantitative detail provided with respect to uncertainty should appropriately reflect level of
knowledge (e.g. that highly specified probability distributions should not be provided if this
level of detail cannot be supported). This was based upon recommendations made by
Kandlikar, Risbey, and Dessai (2005), who set out a framework for identifying the
appropriate level of detail for communicators to use when conveying uncertainty. Within this
framework, a full probability distribution represents the highest level of detail followed by
bounded intervals, order of magnitude, expected sign or trend, ambiguous sign or trend and
effective ignorance. Since being proposed these recommendations have been incorporated
into the guidelines for the IPCCs Fourth and Fifth Assessment Report (AR4 and ARb).

As can be seen from this summary, uncertainty can be defined and characterised in a
number of ways, some of which are more highly specified than others. For the purposes of
this review however the term will used in accordance with the definition set out in the
EUPORIAS glossary® at the time of submission.

UncertaintyiUncertainty means | ack of precision or th
not predictable, but it does not usually imply lack of knowledge. Often, the future state of a

process may not be predictable, such as a roll with dice, but the probability of finding it in a

certain state may be well known (the probability of rolling a six is 1/6, and flipping tails with a

coin is 1/2). In climate science, the dice may be loaded, and we may refer to uncertainties

even with perfect knowledge of the odds. Uncertainties can be modelled statistically in terms

of pdfs, extreme value theory (EBPORIAS dglossarft,ast i ¢ t i n
29/04/2014)

Hence, uncertainty covers both instances where probability distributions are well defined and

those where they are not. Unlike Knight (1921) and Stirling (2007), we will not therefore

classify 6éddecisions under uncertainty6 as separ g
definition of risk will however be broadly in keeping with these conceptualisations, referring

to the severity of an event weighted by its probability of occurring.

Risk fRisk is often taken to be the product of the probability of an event and the severity of
its consequences. In statistical terms, this can be expressed as Risk(Y)=Pr(X) C(Y|X), where

! http://www.euporias.eu/glossary
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Pr is the probability, C is the cost, X is a variable describing the magnitude of the event, and
Y is a sector or region.0(EUPORIAS glossary, 29/04/2014)

Li ke O6uncadretran mtcyobnftildeenced i s one whose prec
depending on context. The confidence interval, for instance, is a statistical estimate of the
range of values a parameter might take (e.g. a representation of dispersion). However, the
wordisalsocommonly used to refer to whatormitdlet ilbe utser
can place in a particular form of informationa As mentioned above, guidelines for the IPCC
AR5 make a clear distinction between confidence and likelihood. In this framework, a
measure of I|ikelihood represents an eventodos esti
probability of an event occurring should a particular prior condition be fulfilled). Confidence,
on the other hand, is a composite of amount of evidence (weak, moderate or robust) and
level of agreement (low, medium or high). Elsewhere however this semantic distinction is not
made. For instance, Han (2013), commenting on the problem of communicating uncertainty
in a clinical setting, states that individual risk estimates derived from aggregate frequencies
are:

A ..not Atrueod risk but a figurative expression
aggregated outcomes of individudd®) whose charact

Hence, even when probabilities take the form of observed frequencies, it may be argued that
subjective and objective elements cannot be entirely disentangled.

In the present report however the term confidence will be used in accordance with the
definition provided by the EUPORIAS glossary (see below), which in itself is broadly in
keeping with the terminology of AR5. Although statistical terms, such as confidence level
and confidence interval will, of course, be used in their technically understood manner.

Confidence frhe validity of a finding based on the type, amount, quality, and consistency of
evidence (e.g., mechanistic understanding, theory, data, models, expert judgment) and on
the degree of agreement. Confidence is expressed qualitatively (Mastrandrea et al., 2010).0
(EUPORIAS glossary, 29/04/2014)
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Key Points: Defining confidence and uncertainty

1 The words uncertainty and confidence are utilised in different ways in different
contexts. In the context of seasonal to decadal climate predictions it is therefore
necessary to identify and address potential mismatches in definition between
information providers and end-users.

1 Uncertainty in predictions and projections arises from different sources (e.g.
randomness, model parameters, human activities) and may be represented at
differentlevelsof det ai | (e.g. full probabil ity
of changeé). Overly specified represenit
decision makers.

3.2.2. Ambiguity aversion

Ambiguity aversion refers to a tendency, frequently observed in experimental economics, for
people to respond aversely to information where probabilities and outcomes are not clearly
specified. It may lead decision makers to reject options where probabilities are not precisely
specified in favour of those where they are; even when second order distributions of possible
likelihoods may render them equivocal. The classic illustration of this is the Ellsberg Paradox
(Ellsberg, 1961): the finding that people tend to prefer an option offering a definite 1/3
chance of success to one offering an ‘ambiguous' 0 7 2/3 chance of success. The presence
or absence of 'missing information' has also been found to impact on judgement and
decision making in situations where its actual content would not i had it been known i affect
choice. Experimental studies demonstrate that where the outcome of an intermediate event
is unknown (e.g. whether one has won or lost a gamble, or succeeded or failed in an
endeavour) people may be a) less willing to accept further risk than they would if outcomes
were known (regardless of what the known outcome is); and b) willing to pay to defer choice
until the outcome of this intermediate event is known (despite making the same choice
regardless of what the known outcome is) ) (Tversky & Shafir, 1992). Ambiguous information
about likelihoods may also be discounted entirely. For instance, in one choice experiment
involving a hypothetical business decision it was found that individuals who were told that
market interest in a venture was 15-30% were as likely to terminate the venture as those
who received no information about likelihoods, while those who were told that interest was
15% or 30% were more likely to continue (Van Dijk & Zeelenberg, 2003).

While the economic and psychological experiments reference above may concern
hypothetical or trivial scenarios, their findings have very real and non-trivial implications for
communication uncertain information. Ambiguity aversion may lead information recipients i
especially those with lower statistical knowledge or less understanding of forecast limitations
- to a) prefer information formats that appear to contain 'less ambiguity'; or b) pay for
information that reduces (or appears to reduce) it. However, failing to convey ambiguity can
be both dangerously misleading (Todini et al., 2005) and detrimental to long term trust in
information providers (Pidgeon & Fischhoff, 2011). Hence, while some recipients may
prefer information formats that appear to denote less ambiguity, it is important that
communicators avoid creating a false perception of certainty.
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3.2.3. Institutional approach to uncertainty

Tolerance for uncertainty varies not only between individuals, but between organisations.
Institutional barriers to the use of new forecasts (and thus the incorporation of new forms of
uncertainty into judgement and decision making) may exist (e.g. (Ramos, Mathevet, Thielen,
& Pappenberger, 2010). This is a point highlighted by Demeritt, Nobert, Cloke, and
Pappenberger (2010) who, discussing uptake and usage of hydrological ensemble prediction
systems, note that deviation from previously established institutional practices may lead to
greater blame in the case of false alarms or false misses. Methods of integrating institutional
risk appetite into the operational use of seasonal climate predictions do of course exist. For
example, ROC scores can be used to determine where thresholds for action should lie given
a particular organisationds t ol erugmmaling tise of
them may be challenging for those without statistical knowledge or appropriate training. Use
may be simplified and aided by the incorporation of these preferences into decision aids that
provide Act / Aten & EckelA2012). Agaie lowever reluctance to diverge from
the status quo may be a barrier to their adoption.

Institutions may also differ in the detail in uncertainty information required for decision
making; with some requiring the identification of possible (or plausible) future states and
others requiring a full treatment of (aleatory and epistemic) uncertainty. Writing in the field of
risk analysis, Paté-Cornell (1996) sets out a six level framework for the treatment of
uncertainties, going from Level O: identification of potential hazards, to 1) identification of
worst case scenario; 2) plausible upper bound (i.e. quasi-worst case); 3) best estimate of
central tendency (i.e. point estimate based on mean, median or mode); 4) probabilistic risk
analysis (in which all uncertainty information is represented by a single risk curve); and 5) full
display of uncertainties (e.g. separate risk curves for all models/hypotheses). As she notes,
the level of treatment needed may vary from case to case, with lower level representations
sufficing in some instances but not in others.

3.2.4 Credibility and trust

The matter of how the presence of uncertainty influences both trust in information and trust
in the providers of information is of importance to anybody wishing to communicate
uncertainty in climate predictions. As previously noted, failing to adequately communicate
uncertainty may, in the long term, lead to a loss of trust in information providers. When it
comes to more immediate responses to uncertain information however, the broader
judgement and decision making literature is however less clear. In one study examining
judgement in a hypothetical medical choice scenario Longman, Turner, King, and McCaffery
(2012) found that found that presenting wide likelihood ranges diminished credibility
attributed to communicators (in this case clinicians). However, in another investigation i this
time using a hypothetical intelligence forecast scenario i the reverse was found (Dieckmann,
Mauro, & Slovic, 2010). This disparity may be the result of the different contexts used, with
individuals expecting greater certainty from clinicians than intelligence reports. If this is the
case one might imagine that climate predictions will be perceived as more akin to the latter
than the former. Nonetheless, it is worth noting that a recent study examining trust in
financial forecasting systems participants reported lower trust in the system when noise was
higher than when it was lower (Goodwin, Sinan Gonul, & Onkal, 2013). However, in this
case the fact that noise was high and signal weak was not explicitly conveyed.

The format in which information regarding uncertainties is presented may also influence the
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level of trust recipients place in it. On examining responses to an environmental hazard

scenario, Gibson, Rowe, Stone, and Bruine de Bruin (2013) obtained evidence to suggest

that participant s-wihit exd rot eld swil taty s grompgtai ni ng un
trusted (and | i ked) s aibhdwith-tnef xotr ndait si polna ymso&r ewitthhaonu té
information. For text-only displays however a trend in the opposite direction was found.

Likewise, the way in which ranges are labelled may also impact on response to the

information. Goodwin et al. (2013) for instance found that labelling upper and lower

confidence intervals as O6best cased and oO6worst c
trust. This highlights the way in which seemingly inconsequential changes in format and

phrasing may influence perception.

3.2.5. User expertise

In communicating uncertainty in climate predictions it should, of course, be kept in mind that

oneds audience may vary in statistical expertise
familiarity with representations of uncertainty in a more general sense.

Research demonstrates that both mathematical ability (see (Peters, 2008) and graph literacy
(e.g. Galesic & Garcia-Retamero, 2011; Okan, GarciaRetamero, Cokely, & Maldonado,
2012 have a pronounced i mpatctd understand and utiNsé mimesid s 6 cap a
and graphically presented information respectively. While it might be expected that a large
proportion of those who obtain seasonal to decadal climate predictions will be
mathematically adept individuals with high graph literacy, this may not universally be the
case; especially where user organisations are smaller or provision more broadly available.
Indeed, in the recent EUPORIAS Work Package 33 survey a notable minority of respondents
indicated that they were not comfortable using measures of spread (e.g. confidence
intervals, standard deviations). Hence, it is important to keep in mind that while some users
will have a high degree of mathematical and technical knowledge, others may have far less
experience with using statistical information, and thus struggle to interpret commonly used
representations. As seasonal climate predictions become more common and reach a larger
non-expert audience, this issue is likely to become more pronounced.

There are also factors not directly related to general mathematical ability that may influence

the manner in which oneds audience may interpret
uncertainty. In a set of choice experiments featuring environmental management scenarios,

Gregory et al. (2012) presented both experts (employed by the US Fish and Wildlife Service)

and laypeople with information pertaining to uncertainties about the outcomes of alternative

environmental management options. Information was presented in the form of either numeric
ranges, evalwuative categories (e.g. O6high6é, O6med
combination of both. Comparison of the responses in each condition indicated that

when both quantitative and qualitative information was presented together experts

tended to base their decisions on numeric ranges while laypeople tended to rely on

evaluative categories. This difference remained when mathematical ability was controlled

for. As Gregory et al. notes, this suggests that presenting information in multiple forms may

not necessarily lead to a convergence of interpretation between experts and non-experts,

even where non-experts possess good mathematical ability.

The potential for divergence between the information preferences of experts and the
understanding of information recipients is also highlighted by Bruine de Bruin and Bostrom
(2013),who stress the need for experts to systematically examine the current state of their
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intended information recipientsd knowl edge

6msmatchesd bet ween communicators and informat.

restricted to the flow of information from technical providers to non-technical users. Todini et
al. (2005) 1 discussing the communication of uncertainty in the context of flood forecasting 1
highlight the divergence between the preferences of researchers (for highly parameterized
models) and operational flood forecast users (for representations that facilitate the
recognition of clear thresholds for action).

While most users (or potential users) of seasonal to decadal climate predictions cannot be
said to be laypersons in the strictest sense of the word, level of expertise and statistical
knowledge is likely to vary amongst them. As will be further discussed in Section 3, semi-
technical recipients of uncertainty information (i.e. non-experts who possess some statistical
knowledge) do not necessarily outperform non-technical recipients in tests of comprehension
(e.g. Ibrekk & Morgan, 1987). Any difficulties that non-expert recipients of information have
with interpreting uncertainty information may be additionally compounded by time limitations
and competing demands. In their report on good practice in communicating
uncertainties in environmental assessments Kloprogge, Sluijs, and Wardekker (2007)
recommend the adoption of a 6progressive
whereby information regarding uncertainti
with outer layers providing a non-technical summary and inner layers becoming
progressively more technically detailed. They also stress the importance of a) ensuring
that the uncertainty information is provided in a manner relevant to the intended recipient
and their decision goals; b) placing information about the uncertainties most relevant to user
decision making in those sections of reports most likely to be read (e.g. abstracts,
summaries, conclusions, sections pertaining to key goals); and c) indicating which
(potentially relevant) uncertainties were excluded from analysis. These sentiments are
largely echoed in a recent report by the US Board on Population Health and Public Health
Practice in their report, which stresses the importance of considering both the expertise of
onebs audience and the phase of decision
(Environmental Decisions in the Face of Uncertainty, 2013).

Conceptualising the movement of climate information from initial scientific knowledge to use

in adaptation str at eSovesirek (2081) reotethat; as one smevesc hai n 6

from projection to use in adaptation, information is passed from a group of users comprised
mainly of scientific experts to user groups containing a large proportion non-experts.

However, in a content analysis of document s

chainbo, she found that documents placed |
uncertainties emphasised at earlier points in the chain, or failed to discuss uncertainties
associated with projections at all. As previously noted such failures to effectively convey
uncertainty threaten both organisational planning and trust in communicators.

3.2.6. Heuristics and biases

When making judgements as to how to respond to a situation decision makers may not
always have the time, capacity or inclination to perform a full systematic analysis of the
available information. The word heuristic is widely used in the judgement and decision

di

es |

mak i

ater

making |literature to refer to simple Oment al

lieu of more cognitively demanding processes in choice and judgement (e.g. Gigerenzer &
Goldstein, 1996; Kahneman, 2011). The employment of these does not necessarily lead to
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poorer decisions. l ndeed, it has been argued t ha
an item of information is more important to accurate interpretation than being able to recall

its verbatim characteristics (e.g. Reyna, 2008). However, a number of cognitive biases have

been identified that may adversely influence judgement when individuals are faced with

uncertainty. Many of these have been examined within the context of psychological and

economic experiments. However, their specific relevance to the communication of climate

and information has been noted (e.g. Nicholls, 1999). Listed below are a set of heuristics

and biases that may potentially impact upon the interpretation and usage of information

regarding uncertainty in climate predictions

I Ratio bias effect

Also known as denominator neglect, the ratio bias effect is a systematic tendency to respond

differently to ratios represented with larger numbers (e.g. 100 in 1000) to logically equivalent

ratios represented with smaller numbers (e.g. 1 in 10) (e.g. Denes-Raj & Epstein, 1994).

This bias has the potential to influence judgement of any frequency-based representation of

probability that does not make use of consistent denominator information. For instance, if

denomi nat ors are neglected, a 640 in 1006 chance c
would be interpreted as more |likely than a 64 in
would not perhaps be anticipated amongst those recipients of climate information who

possess statistical expertise, it has been observed amongst educated populations (e.g.

Peters et al., 2006). This bias may be circumvented by the use of: a) consistent

denominators; or b) a percentage format.

1 Base rate neglect

It has frequently been observed that individuals faced with conditional probabilities may
neglect base rates (e.g. Goodie & Fantino, 1996; Hoffrage & Gigerenzer, 1998). To borrow a
hypothetical illustration from Nicholls (1999): if a model that is accurate 90% of the time
predicts that a drought will occur in a region where there is historically a 10% chance of
being in drought, then (assuming that prior probabilities remain constant) there is both a 9%
chance of the model delivering a hit (90% chance of the model correctly predicting a state
that occurs 10% of the time) and a 9% chance of the model producing a false positive (10%
chance of the model incorrectly rejecting a state that occurs 90% of the time) (see Table 3).
However, a forecaster may struggle to convince a forecast user that the actual likelihood of a
drought occurring at the location is just 50%.
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Table 3 Likelihood of hit, miss, false alarm, and correct non-detection for a forecasting
system with 90% accuracy predicting an event (drought) with a 10% likelihood of occurring

Drought observed Drought not observed Total
Drought predicted Hit False Alarm
9% 9% 18%
(90% chance prediction |(10% chance that
correct * 10% chance | prediction is wrong *
drought will occur) 90% chance that
drought will not occur)
Drought not Miss Correct non-detection
predicted
1% 81% 82%
(10% chance that (90% chance that
prediction is wrong * prediction is correct *
10% chance that 90% chance that
drought will occur) drought will not occur)
Total 10% 90%

The forecast example used here is of course deterministic rather than probabilistic and
assumes both a) an unchanging climate; and b) an unrealistic forecasting system that
produces misses and false alarms at an identical 10% rate relative to observations.
However, it serves to illustrate how prediction users with less statistical experience may
struggle to integrate reliability and skill information with model output.

1 Framing
This is a bias whereby the manner in which infor
|l oss, or o6éevent occurringdéd versus Onot occurring

lead to inconsistent responses to objectively identical information (Tversky & Kahneman,

1981). For instance, 670% chance of above average
630% chance of average or below avegradeewvainnfoalal
O6probabié¢vent ofi motecommended as a(way to counte
Spiegelhalter, Pearson, & Short, 2011). Indeed, current IPCC AR5 guidelines explicitly

instruct authors to strive to avoid framing effects (Mastrandrea et al., 2010).

1 Availability

The availability heuristic refers to a tendency to base judgements regarding likelihood and
magnitude on salience and the ease and O6avail abi
to mind (e.g. Slovic & Fischhoff, 1977; Tversky & Kahneman, 1973). For example, drought in
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a particular locale may be perceived as more likely if instances where this has previously
occurred come easily to mind (regardless of what present meteorological indicators
suggest).

1 Probability weighting

This term refers to a tendency for those making judgements and decisions to subjectively
weight linear increments in probability in a non-linear fashion, with sensitivity decreasing as
probabilities move away from certainty (e.g. (Kahneman & Tversky, 1979). For instance, the
difference between a 0 and 5% chance of an event occurring will be perceived as
subjectively larger than the difference between a 50% and 55% chance of said event
occurring.

1 Overweighting of new information

The tendency to give new information undue Owei ¢
observed amongst technical users of hydrological forecasts (Kahneman & Tversky, 1979). It

would seem plausible that this bias might also be observed amongst both technical and non-

technical users of other types of forecast information.

1 Confirmation bias

Recipients of information may seek out or attend more to information that supports existing

practices or judgements, while downplaying disconfirming evidence (see for instance

(Bazerman & Moore, 2012) for discussion). Hence, information regarding prediction

uncertainty may be neglected by those who favour the method of prediction being used, but

focussed upon by those who do not (Vaessen, 2003); see (Kloprogge et al., 2007), for

English summary). Similarly, the output of new n
prior beliefs, but disregarded when they do not. In the domain of seasonal to decadal

forecasting, one might anticipate confirmation bias to occur when users hold strong pre-

existing beliefs regarding future weather and climate states.

1 Bounded rationality

As previously mentioned, reliance on simple rules of thumb is not necessarily a maladaptive
response to complex situations. As Simon (1957) points out, consistently employing
expected utility analyses for every decision that one makes would be impossible.

In the context of European flood forecasting it has been observed that at least some

specialist users and risk manager wish to receive information in a manner that facilitates
straightforward Act/ Don &t (DAmetitt etaé, 201& Todimstal.( see f or
2005). On a similar note, in action research with Australian farmers, McCown and colleagues

found that users of an analytic interactive tool for simulating possible planting outcomes in

di fferent conditions tendeded ol Uk @Mc@oin, 2082s pen e é o
McCown, Carberry, Dalgliesh, Foale, & Hochman, 2012).

On a related noted, responses to a recent survey conducted with EUPORIAS stakeholders
and other interested organisations also indicates that a large proportion of respondent
organisations would like to receive information in a manner that facilitates Yes/No decision
making; although they may wish to receive more comprehensive data in addition to this.
The question of how uncertainty information can best be integrated into
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representations that facilitate the identification of appropriate thresholds for action
(where these are desired) would thus seem to be of some importance.

Key Points: General issues in communicating confidence and uncertainty

1 Ambiguity aversion means that information recipients may prefer to receive clearly
defined magnitudes and likelihoods to ranges and confidence levels. However, failing
to provide information about uncertainties can lead to false perceptions of certainty
and be detrimental to both safety and trust in information providers.

9 Organisations are likely to vary in both their tolerance for uncertainty in seasonal to
decadal climate predictions and the level of detail regarding uncertainty they require.
Methods of representing uncertainty that incorporate institutional thresholds for action
can facilitate the use of forecast and projections.

1 The information presentation preferences of end-users may not always match those
of information providers. Such mismatches must be addressed.

1 As experience of using both climate predictions and statistical information is likely to
vary considerably amongst the end-users of seasonal to decadal climate forecasts, it
is important to keep in mind firstly, that not all users may be familiar with certain
statistical concepts (e.g. confidence intervals, pdfs); and secondly, that experts and
non-experts users may focus on different aspects of the information being
communicated (e.g. quantitative data versus qualitative evaluative categories).

1 When it comes to interpreting information about uncertainty there are a number of
thought biases that have the potential to lead to the neglect or misinterpretation of
important information. These may affect both technical as well as non-technical users
of information. When designing methods of communicating uncertainty one must take
into account (and strive to mitigate) the potential for framing effects and other
cognitive distortions.

3.3. Representing uncertainty

When communicating uncertainty to a recipient one is faced with the matter of how best to
represent the information. As Stephens et al. (2012) note a communicator may face trade-
offs between richness (i.e. level of detail and resolution), robustness (i.e. accuracy of
deterministic predictions, reliability of probabilistic predictions, and the appropriate reflection
of skill) and salience (i.e. comprehensibility and usability). The distinction between
robustness and level of detail is stressed by Dessai, Hulme, Lempert, and Pielke (2009),
who i writing with respect to longer term climate adaptation i argue that unwarranted
precision may lead to poor adaptation decisions. This sentiment is echoed in the domain of
health risk communication by Nelson, Hesse, and Croyle (2009), who advise against the use
of unnecessary detail when reporting numeric values (e.g. reporting values to several
decimal places when a whole number would be sufficient). It should however be noted that
the manner in which more highly specified numeric values versus less highly specified
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estimates of likelihoods and outcomes are perceived by decision makers does not yet
appear to have been systematically tested.

In order to provide greater detail a communicator may provide more information (or
more varied representations of the same information). However, in doing so they may
contend with the problem of cognitive overload. That is to say that when presented with a
high volume of information people may not have the capacity to process all of it, or identify
the most i mportant features, and t hudeldreet o me o0Ve
al., 2009), for review). In addition to this, information recipients i and indeed information
providers i may be subject to certain cognitive biases.

The following three subsections will focus on the various ways in which uncertainty
can numerically, verbally and visually represented. It is, of course, recognised that this
distinction is somewhat artificial, as these are frequently combined in various ways. For
instance, calibrated language may be presented with corresponding numeric ranges. Graphs
and other visual representations may be appended with verbal descriptions or numeric
tables. However, for the purposes of discussing the individual consideration associated with
each form it was felt that this division i while artificial i is pragmatically justifiable.

3.3.1. Numeric

3.3.1.1. Likelihood format

The question of how to best present numeric information to recipients is one that has long

been a point of interest in the judgement and decision making literature. Evidence strongly

suggests that the manner in which numeric information is interpreted can be strongly

influenced by the format in which it is presented: that is to say, whether it is presented in a
percentage, ratio (also referred to asSlodcd requenc
Monahan, and MacGregor (2000) for instance observed that even medical professionals

rated a fictitious psychiatric patient as posing a greater danger when their estimated risk of

committing a violent offense was described in frequency rather than percentage format. It

has been proposed that humans are innately better equipped to utilise likelihood information

presented in the form of natural frequencies( e. g. Aout of every 1000 cas
(e.g. Gigerenzer, 2003). Indeed, it does appear that presenting conditional probabilities in

frequency form reduces base rate neglect (e.g. Gigerenzer & Hoffrage, 1995).

However, evidence from the field of weather forecasting has indicated that, when
receiving probabilistic forecasts, members of the US public both prefer percentage based
representations to frequency formats (Morss, Demuth, & Lazo, 2008) and better understand
then (Joslyn & Nichols, 2009). As Stephens et al. (2012) note, communicators cannot
automatically assume that a format that works well in one context will function as well in
another. When contrasting forecasts of potential future weather and climate events to
predictions of health outcomes, it is perhaps understandable that such differences may
arise. It would seem plausible that being prompted to imagine 1000 patients like oneself may
lead to a more concrete and salient mental representation than being prompted to imagine
1000 days like tomorrow. It is also worth noting that in the previously mentioned Work
Package 33 user needs survey a strong majority of respondents indicated a preference for
the representationd 3 0 % ¢ h a n coger tbefstruct@aallynidentical 3 i n 10 chance o
andi. 3 chanac.e of rain
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3.3.1.2. Interpreting probabilistic forecasts

The extent to which those without technical or statistical expertise can effectively use
information regarding forecast uncertainty is a manner that has generated considerable
interest in the field of probabilistic weather forecasting. Although research conducted in this
area has typically focussed on members of the public rather than operational users, this
work would seem to have relevance for the communication of information regarding climate
predictions to users without a statistical background.

On a positive note, recent research conducted with the US public suggests a) that
those presented with probabilistic forecasts were more likely to take appropriate action than
those presented with deterministic ones (Joslyn & LeClerc, 2012); and b) that people infer a
degree of uncertainty into purely deterministic forecasts (Morss et al., 2008). Hence, it would
appear that non-technical recipients of meteorological information can effectively utilise
probabilistic information to make appropriate decisions. However, it has been noted that
many people make reference class errors when presented with such forecasts (e.g.
Gigerenzer, Hertwig, Van Den Broek, Fasolo, & Katsikopoulos, 2005). This is to say that a
70% chance of precipitation may be misinterpreted to mean that it will rain over 70% of a
particular area, or that 70% of weather forecasters agree that it will rain tomorrow, when
what is actually intended is that there is a 70% chance that rain will occur in a specific area,
during a specified time period. While it has been argued that a complete, normatively correct
understanding of the information presented may not always be a barrier to appropriate
adaptive action (see (Handmer & Proudley, 2007), for discussion), it may lead people to
make decisions they would not have otherwise made. For instance, in a hypothetical
protective action task Morss, Lazo, and Demuth (2010) found that participants who believed
t hat probability of precipitation estimates refe
lower threshold for taking (costly) protective action. Hence, when it comes to communicating
measures of likelihood to those using said information for organisational planning and
decision making, the importance of ensuring that it is made clear what said likelihoods refer
to should be stressed. Again, many users and potential users of seasonal to decadal climate
predictions have a high level statistical understanding, and will thus be more likely to
interpret simple probabilistic information as intended. However, it is important to recognise
that not all may have the same experience of working with probabilistic forecasts and
prediction. It is also possible that even those with greater statistical understanding may make
reference class errors when representations differ from those that they are used to.

3.3.1.3. Conveying uncertainty through numeric ranges

Probabilistic forecasts of the kind discussed above typically feature point estimates without
any indication of dispersion. While such representations may be considered suitable in some
contexts (e.g. weather forecasts provided for public consumption), they are unlikely to be
appropriate in situations where a) dispersion is high; and b) small probabilities of extreme
events of concern. They may also mislead users into believing that forecasting systems offer
more certitude than they do.

One way of communicating dispersion (or spread) in estimates of likelihood and
magnitude is of course through the use of numeric ranges (e.g. 30-40% chance of rain
tomorrow) rather than point estimates (e.g. 35% chance of rain next week). The question of
how non-technical and less statistically experienced users perceive and utilise numeric
ranges versus point estimates is one that has drawn interest in various fields. In the area of

EUPORIAS (308291) Deliverable 33.2 Page 22



health findings have been inconsistent. In one study involving a hypothetical treatment

scenario Longman et al. (2012) found that participants presented with range estimates

demonstrated lower understanding and higher perceived risk. In this study participants

presented with large ranges also attributed less credibility to information providers.

On the other hand, in a similar study concerning hypothetical personalised cancer risk

estimates, Han et al. (2011)f ound t hat pr es e ntihoodgstibatesdsagui t yo6 i
numeric range increased worry but had no main effect on perceived risk. In both instances
6ambiguity aversion6 was cited as a reason for d
with ranges and those presented with point estimates.

As previously stressed however, responses to information regarding uncertainty in a context
such as health may differ from those in response to climate predictions. Indeed, in studies
examining responses to weather forecasts, findings have been somewhat more supportive

of the ability of non-t ec hni c al recipientsd ability to adapt:.i
the form of ranges. Roulston, Bolton, Kleit, and Sears-Collins (2006) found that providing
participants with information regarding a temperaturefore cast 6 s err or range i mp

performance on a hypothetical road salting task. Findings obtained by Joslyn and Savelli
(2010) meanwhile suggest that the US public anticipate bias in existing probabilistic
forecasts (even in instances where it is not warranted). Joslyn and Savelli thus argue that
the provision of specified ranges around probabilistic forecasts may be necessary to
counteract this. It should not however be assumed that the provision of numeric ranges to
indicate uncertainty will necessarily lead to uniform utilitarian responses. In a hypothetical
cost/loss task (where participants must indicate whether they would choose to take a costly
precaution in order to reduce the impact of an even more costly potential threat), Morss et al.
(2010) found that participants responded differently to scenarios featuring potential damages
from frost and damages from flooding, despite the expected value and uncertainty structure
remaining constant.

Key Points: Numeric representations of uncertainty

1 While it is helpful to examine work conducted in other fields it should be kept in mind
that the best representations of uncertainty to use in other areas (e.g. health and
finance) may not be the best to use when it comes to seasonal to decadal climate
predictions. Thus, recommendations to use frequencies rather than percentage
representations of probability made in other domains may not be useful when it
comes to communication climate predictions.

1 While ambiguity aversion with respect to the presentation of range versus point
estimates has been observed in certain fields, research examining the interpretation
of probabilistic weather forecasts suggests that non-technical users can effectively
utilise probabilistic information presented as numeric ranges i though their decision
maki ng may not be indicattade-eff of a dénor

3.3.2. Verbal
The use of verbal descriptions to convey uncertainty regarding likelihood has been
suggested as one way to circumvent the problems posed by variations in probabilistic
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understanding and lack of precision in numeric estimates. The IPCC AR5 guidelines, for

example, provide detailed instructions for the use of calibrated language to describe both

likelihoods and level of confidence (amount of evidence and level of consensus)

(Mastrandrea et al., 2010). Work in other domains, such as health suggests that providing

verbal O0evaluative categoriesd can aid the compr
information proves difficult to evaluate (e.g. Peters et al., 2009). However, as will now be

discussed, caution should be taken when utilising verbal likelihoods in communication.

3.3.2.1. Verbal expressions of likelihood

One issue is, of course, that different individuals may interpret probabilistic terms such as

0l i kelyd and o6unl i kel BulescunBroomael, &ne Bor (2009),ifof f er ent wa
instance,f ound that participants presented with stat:«
Assessment Report AR4 (IPCC, 2007), along with the verbal likelihood descriptors used in

said report, demonstrated high variability in their estimates of probability. Although this was

lower for those participant provided with accompanying numeric information that which

probabilistic ranges were covered by phrases such as 'likely' or 'unlikely'. There is also

evidence to suggest that people conflate verbal estimates of likelihood with representations

of risk (i.e. a composite of magnitude and likelihood rather than just likelihood). Findings

obtained by Patt and colleagues suggest that the interpretation of verbal statements

regarding likelihoods can be influenced by a) the perceived severity of an event (Patt &

Schrag, 2003); and b) whether one is being asked to act as a communicator or recipient of

information (Patt & Dessai, 2005). Disparity between the intentions of communicators and

the perceptions of users has also been observed with communications concerning over the

counter medicines. Berry, Raynor, Knapp, and Bersellini (2004) found that, when presented

with terms such as 6commondé and o6r ar eob, member s
the possibility of experiencing adverse side effects.

Keeping the above in mind, general recommendations made with respect to the
communication of verbal likelihoods include:

1 Using the same stem (e.g. very likely, likely, as likely as not, unlikely, very unlikely)
for all terms within the scale in order to reduce (though not eliminate) variability in
interpretation (Lipkus, 2007)

1 Presenting numeric ranges each time verbal likelihoods are utilised, with the size of
the range indicating the degree of uncertainty regarding the likelihood in question
(Budescu et al., 2009)

1 Establishing, prior to use, that the scale used reflects the perceptions of the intended
users as far as possible (e.g. Berry et al., 2004)

3.3.2.2. The segregation of confidence and likelihood
As previously noted, current IPCC AR5 guidelines specify that (humeric and verbal)

estimates of | ikelihood should be segregated fro
(though high confidence should be assumed if a full probability distribution is provided). In
the I PCC AR4 |l evels of oO6confidenced were assighne

dropped on the grounds that they may this | ead t
defined in the report (i.e. a composite of robustness of evidence and consensus amongst
experts) and Ostatistical confidenced. Similar s
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the health domain are also in use (see Han, 2013). The U.S. Preventive Services Task

Force (2008) uses a three pointnodleoviidC,er& md chitwymo
regarding net benefitdo. The Grading of Recommend
Evaluation (GRADE) Working Group segregates (qualitatively ranked) quality of evidence

from strength of recommendation (Balshem et al., 2011). This separation of different sources

of uncertainty is, of course, done to enable greater transparency and comprehension.

However, to the author of this reviewbds knowl edg
interpreted by information recipients has not been systematically tested.

As Risbey and Kandlikar (2007) point out, one potential problem with segregating
estimates of likelihood from estimates of strength of evidence and consensus, is that they
cannot be fully separated on a tcaoinncteypdt uwai It hl edvl eolw
confidenced seems paradoxical. I n response to th
guidelines for IPCC AR5 state that where low or very low confidence exists likelihood
information should not be provided.

3.3.2.3. Linguistic uncertainty

Another challenge faced by those wishing to communicate information verbally is the
potential for what Carey and Burgman (2008)have ter med 6l inguistic unce
uncertainty about the meaning of a communication to arise as a result of the ambiguity

(possibility for multiple interpretations of the same word), vagueness, under-specificity or

context dependence of the language used. This problem has been recognised in a number

of diverse domains including weather forecasting (e.g. Handmer & Proudley, 2007),

hydrology (Demeritt et al., 2010), health (Politi et al., 2007), food safety (Lofstedt, 2006),

fisheries management (Hauge, Nielsen, & Korshrekke, 2007), toxicology and engineering

(Christensen, Andersen, Duijm, & Harremoés, 2003). Of particular relevance is the

persistent observation that a large proportion of US and Australian recipients of probabilistic

weather forecasts misunderstand what probability of precipitation estimates refer to (e.g.

Hadmer & Proudley, 2007; Gigerenzer et al, 2005; Morss et al. 2008). This is to say that a

i70% chance of rain tomorrowd may refer be taken
of the day) or spatial (i.e. rains over 70% of the area described) quality rather than a
probabilisticone (i.e.i t  wi | | rain on 70% of all days |ike t
classd has not been specified. Hence, an individ
means without correctly identifying the event it pertains to.

As Christensen et al. (2003) point out, terminology regarding uncertainty varies from field to
field and it may not be possible to create a standardised set of terms. However, it is
important that terms should be clearly defined within the context in which they are being
utilised.
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KeyPoints: Verbal representations of uncertainty

1 Representing uncertainty verbally using calibrated language (e.g. very likely, likely,
unlikely) can lead to differences in the way in which likelihoods are interpreted by
information recipients. Evidence suggests that problem may be reduced by
consistently including numeric ranges with each use of such language (as oppose to
providing a single table of definitions).

1 In presenting information about uncertainty to end users one should strive to reduce
'linguistic uncertainty' by clearly defining the terms one is using. This is especially
important in the context of seasonal to decadal climate forecasts and projections
where the phraseology used by information providers may have different meanings to
end-users.

3.3.3. Visual and audio representations

A wealth of visualisations are available to those seeking to communicate information

regarding uncertainty to recipients of varying levels of technical expertise; ranging from

relatively simple bar and pie charts to elaborate interactive tools. Nelson et al. (2009) advise

those seeking to visually communicate information to take into account the perceptual

processes of proximity, continuation and closure (Wertheimer, 1938). Proximity is the

propensityto i p e r ctenis that are close to each other in the visual field to be related in

s 0 me \pa2p)pa process that can facilitate comparison if the items to be compared are

placed close together in an ordered fashion (see also (Hibbard & Peters, 2003). Continuity

referstoit he eyeds tendency to follow Iines and dire
t he vi s (paa6); with Melsah et al recommending thati when constructing tables i

decimal points be aligned and alternate lines shaded. Closure, isthe tendencyif or peopl e t

ofill ind missing information that is not specif
present at i onpl2®;thas, tiemeed for.cléar labelling that eliminates the need
to ofill ind is emphasised.

Again however, the question of which precise representation one should use is not one that
has a simple answer.

3.3.3.1. What is being communicated?

The first question that a communicator may ask in considering how best to visually represent

uncertainty regarding likelihoods or magnitudes is what the visualisation in question will be

used for. Spiegelhalter et al. (2011) makes a number of recommendations for tailoring visual
representations to the communication of uncertainty, including: the creation of multiple

graphics for multiple users; the provision of part to whole comparisons; the avoidance of

framing effects by presenting frequencies or per
being represented; informative | abellinas the ayv
of the audience; and rigorously testing all visualisations prior to use.

When it comes to the representation of simple quantities, it is generally held that bar
charts are useful for facilitating comparison between magnitudes; pie charts, for enabling the
highlighting of a particular proportion; and line graphs for displaying trends over time (see
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Nelson et al., 2009, for full review). The notion that the different representations facilitate the
extraction of different information also holds true for the depiction of more complex statistical
information. In their seminal research on the subject of visual communication Ibrekk and
Morgan (1987) observed that, when asked to identify the mean of a binomial distribution,
simple confidence intervals (on which means were explicitly marked) elicited the greatest
number of correct estimates; while probability density functions and cumulative density
functions tended to erroneously elicit modal and median responses respectively. When it
came to making comparisons between values however, cumulative density functions were
found to outperform other representations. These observations were echoed in a recent
series of investigations by Edwards, Snyder, Allen, Makinson, and Hamby (2012). On

presenting participants with a range of ri sk

responses were required, Edwards and colleagues observed that participants were more
likely to correctly identify mean values and take appropriate action when graphics rendered
the correct response visually explicit (e.g. error bars depicting mean values; complementary
cumulative distribution functions indicating when a threshold was crossed). These findings
serve to highlight the importance of a) considering how a visual representation of uncertainty
information will be utilised, and whether they render the most important and useful
characteristics salient; and b) testing whether users interpret the information depicted in the
manner that communicators intend.

With respect to visually conveying information regarding uncertainty in weather
forecasts, Roulston and Kaplan (2009) observed that participants presented with fan charts
depicting statistical confidence in temperature forecasts performed better in a decision task
than those presented with point estimates. S. L. Joslyn and Nichols (2009) meanwhile found
that presenting US patrticipants with pie charts depicting chance of rain versus chance of no
rain reduced reference class errors. These studies were of course conducted with members
of the public rather than those using forecasts in an operational context. However, it is worth
keeping in mind that not all those using climate predictions in their work will necessarily have
technical and statistical understanding above that of the general public. Indeed, in the recent
Work Package 33 survey it was found that representations of spread, such as error bars and
fan charts were less highly favoured by those reporting lower comfort with using statistical
information (although it should be kept in mind that unlike Roulston & Kaplan the survey
measured preference rather than performance).

Of course, the representations discussed above suggest well defined distributions of
likelihoods and magnitudes. This leaves the question of how second order uncertainty may
be represented. It has been suggested that when uncertainty results from a lack of

consensus or a dearth of evidehcécbpophPLCE&eARBO S}

transparency and blurring may be used to convey this (see Spielgelhalter et al, 2011 for an
example). As Politi et al. (2007) note, the efficacy of using such representations to
communicate uncertain information does not appear to have been widely tested. However,
as will discussed further in Section 3.4, recent work by Jupp, Lowe, Stephenson and
colleagues have recently explored the way in which transparency (Slingsby et al., 2009) and
colour saturation (Jupp, Lowe, Coelho, & Stephenson, 2012; Lowe et al., 2013; Slingsby et
al., 2009) can be used to communicate first order uncertainty (ensemble distribution) and
second order uncertainty (reliability and skill) in seasonal forecasts.

The question of how resolution can be appropriately represented is also one that poses a
challenge to communicators. For instance, the use of smooth contours on maps may create

EUPORIAS (308291) Deliverable 33.2 Page 27

ma n

5 M



the impression that a prediction provides greater spatial precision that it does. However, as
Stephens et al. (2012) report, the use of blocky rather than smooth contours may render the
information less salient (and thus less understandable) to end users.

3.3.3.2. Familiarity

Preferences for visual representation that are already familiar have been observed amongst
recipients of information. The recent WP33 user needs survey, conducted with EUPORIAS
stakeholders and other interested organisations, found a consistently strong positive
association between existing use of visualisations and ratings of preference. This is also
echoed in the recent findings of Daron and colleagues (2014) who, on examining responses
to different methods of communicating uncertainty in climate projections, found that
respondents tended to prefer a more familiar bar graph representation most highly over
more novel visualisations. Meanwhile, in the domain of hurricane forecasting a survey
conducted by the US NWS with members of the public meanwhile indicated that
respondents preferred existing representations o
forecasts (Broad, Leiserowitz, Weinkle, & Steketee, 2007). This preference for familiar
representations is not limited to non-technical users of climate and weather information,
Pappenberger et al. (2013) for instance, observed that when a workshop group composed
predominantly of hydrologists, meteorologists and flood forecasting experts were asked to
design a format for the delivery of a 10 day discharge forecast many opted for familiar
formats.

Preference for familiar formats is not of course a negative thing in itself. However,
greater familiarity may not always correspond with greater comprehension and usefulness.
In their studies of graph interpretation, neither Ibrekk and Morgan (1987) nor Edwards et al.
(2012) observed a consistent relationship between familiarity and performance.
Nonetheless, if the necessary information can be accurately and coherently conveyed using
a form familiar to and/or preferred by users then there would seem to be a clear case for
utilising it. Again, the importance of fully testing visualisations prior to use should be
stressed.

3.3.3.3. Potential for misinterpretation

As with numeric and verbal representations of uncertainty those that are visual in nature may

not be interpreted in the manner a communicator intends. As previously mentioned, the

results of I brekk and Morganés (1987) study indi
distribution is often selected as the mean. Evaluation of the manner in which US residents

interpret the cone of uncertainty has shown that many people anchor on the track line and

misinterpret the cone to represent the boundaries of the area that might be affected by a

hurricane (e.g. Broad et al., 2007).

The misinterpretation and misuse of graphical representations of uncertainty is not
limited to non-technical and semi-technical users. Demeritt et al. (2010) for example
observed instances of hydrology sector professionals stating a wish to follow single
ensemble members on hydrological ensemble forecasts presented as spaghetti graphs.
Also, commenting on the potential (mis)interpretation of spaghetti graphs, Dettinger (2005)
notes that the structure of said diagrams may lead to misapprehensions regarding spread,;
with the eye being drawn to extreme upper and lower visual bounds, rather than the
concentration of lines in more central areas. In cases where users are concerned with
potential extremes then drawing attention to upper and lower limits may not pose a problem.
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However, where overall distribution and measures of central tendency are of interest, users
may struggle to extract this information from visualisations where it is not clearly depicted.
The choice of whether to use minimum and maximum values or confidence intervals as
upper and |l ower | imits may al smweadandlikeliheod, by
inducing them to anchor on visible limits.

In their analysis of climate adaptation documents Stoverinck and colleagues
observed considerable inconsistency in the colours used to depict the direction predicted
changes in temperature and precipitation in visualisations (Stoverinck, 2011; Stoverinck,
Dubois, & Amelung). Given their use in other contexts, colours such as blue, red and green
may evoke multiple pre-existing associations amongst information recipients. For instance
bluemay be associated with both o6waterdéd and

with édverdancyd and 6égob. Hence, this vari

considerable confusion and misunderstanding. Stoverinck et al. also critique the use of maps
in communicating uncertainty in climate projections; arguing that they may inhibit the
integration of information and render trends difficult to interpret. The importance of avoiding
the selection of counterintuitive colouring on climate maps is also emphasised by Kaye,
Hartley and Hemming (2012), who also stress the importance of considering a) colour-
blindness (i.e. avoiding red/green scales where possible); and b) the potential for the use of
a large number of hues to render maps difficult to interpret.

Once again, the importance of fully testing methods of visual communication must be
emphasised.

3.3.3.4. Context of use

The context in which the information might be used should also be considered. When
presented with uncertain information, both technical and non-technical recipients are faced
with the challenge of integrating it with a) other sources of information; and b) current
institutional practices (e.g. Demeritt et al., 2010). Hence, information that is not presented in
a manner that facilitates this may not be used (or used inappropriately). As research with
both those in the hydrology sector (e.g. Demeritt et al., 2007) and Australian
agriculture (McCown et al., 2012), along with the findings of our recent user-needs
study indicate, end-users may wish to have it presented in a way that facilitates

straightforward 6yesd/ 6nod responses to si

The capacity of decision makers to interpret and utilise graphical representations in
an operational context may also be influenced by factors such as time pressure and
cognitive load. For instance, in their study of graph comprehension, Edwards et al. (2012)
observed that the addition of a time pressure manipulation decreased choice accuracy.
Earlier writings on the subject of visual communication have also echoed this point. Lamberti
and Wallace (1987) note that graphical displays should seek to minimise cognitive load and
make use of symbols that are meaningful and easily discriminable in the particular context in
which they are used. Whil e Lamberti and
field of military command decisions, it is a point that would seem to generalise to any context
where decision makers may be under time pressure or overburdened with information from a
multitude of sources.
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3.3.3.5. Using sound to represent uncertainty

While the bulk of this subsection has concerned itself with visual representations, it should
also be noted the potential for sound to be utilised in communication of uncertainty is
increasingly being explored (Brown & Bearman, 2012). In a recent study examining whether
variations in pitch could facilitate the interpretation of uncertainty information in UKCP09
climate projections? it was found that those presented with sonification performed better on
an interpretation task, and had faster response times than those presented with visual
information alone (Bearman, 2011). This effect appears to have been strongest amongst
those already familiar with UK CP09, possibly suggesting that this format could be of
greatest use to more experienced users of climate information. Although given the
complexity of the underlying information, it is also possible that a similar approach may
facilitate the interpretation of less complex datasets amongst a broader range of users.

2An example of how sound was utilised in this study can be at http://vimeo.com/17029358
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Key Points: Visual and audio representations of uncertainty

1 In presenting information about uncertainty in seasonal to decadal predictions to end-
users, information providers may have to made trade-offs between richness (detail
and level of specificity), robustness (accuracy or reliability) and salience (how clear
and understandable information is). It is therefore vital to understand the information
requirements of end-users.

1 The best visualisation to use in any given instance is likely to depend both on what
being communicated and the context of use. Where an end-user has a particular
threshold for action, visualisations that render the threshold salient are likely to
facilitate understanding and usage.

91 Preference for a particular form of uncertainty representation may not always denote
better understanding of (and ability to use) it. Information providers are thus faced
with the challenge of producing representations that are both acceptable to end-
users and facilitate accurate interpretation.

1 When seeking to provide information about uncertainty to end users the context in
which the information will be used should be taken into account. Factors such as time
pressure could mean that end-users need to extract the 'gist' of information quickly
and without extensive deliberation. The matter of how end-users wish to use
representations is also important; some may require representations that explicitly
facilitate Act/Don't Act decisions.

1 When designing visualisations care should be taken to reduce any confusion that
may arise from choice of colour. This is especially important in the context of
seasonal to decadal predictions due to strong pre-existing associations between
colours and climate/weather events (e.g. red with heat and/or danger; blue with both
cold and/or water). Ensuring that end-users are able to easily link colours to states is
vital.

1 The use of sound in the communication of uncertainty may assist interpretation
amongst some users.

3.4. Current and proposed methods of visualising uncertainty in

seasonal climate predictions

There are a number of ways in which information regarding uncertainty in seasonal to
decadal climate predictions can be visualised. What follows will be an overview and
discussion of the types of representation both currently in use amongst climate service
providers and those suggested for use. Four key areas will be covered: predictions
represented using maps (3.4.1), predictions represented using graphs (3.4.2), visualisations
for communicating reliability and skill (3.4.3); and decision aids (3.4.4).

3.4.1 Maps

Maps are one of the most frequently utilised ways of presenting seasonal climate
predictions. In a recent survey conducted with EUPORIAS stakeholders and interested
organisations, maps emerged as the most highly favoured format for representing
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uncertainty in climate information. Given their capacity to display spatial information in a way
that allows visual characteristics to be matched with real world locations, this is perhaps
unsurprising. There are however a range of different way in which this format can be utilised
to represent climate information at a seasonal to decadal timescale.

3.4.1.1 Terciles, quintiles and two-category.

Maps communicating seasonal climate predictions typically illustrate the extent to which
predictions diverge from long term averages. One deterministic approach is to illustrate a
best estimate of the extent to which a variable is expected to exceed or fall below the
average (e.g. by degrees Celsius, millimetres of precipitation, wind speed mph, etc.)
However, while representing predicted anomalies in this manner allows for estimated
magnitude to be displayed, it does not permit uncertainty to be depicted in detail. Although a
strippling effect can be used to denote regions where dispersion amongst ensemble
members is low, providing an indication of how high agreement is (see for example (Kaye et
al., 2012).

To illustrate exactly how the distribution of ensemble members compares to past
observations two-category, tercile or quintile representations can be used. Of these terciles
are perhaps the most popular. To create tercile representations, past observations are split
into three categories: upper tercile (33.3%), middle tercile (33.3%) and lower tercile (33.3%).
The proportion of ensemble members falling each category is then used to represent the
estimated likelihood (according to the model used) of the variable falling into these upper,
middle and lower categories. Likewise, a two-category representations are based on a two
way split in past observations (upper 50% and lower 50%), while quintiles utilise a five way
split (each category representing 20% of past observations). Maps then visually depict the
proportion of ensemble members falling into a given category using gradations of colour.

The seasonal temperature maps depicted in Figures 2a - ¢ below are taken from the
Met Office website, which allows visitors to view seasonal predictions for a range of
variables in the same format®.

3 http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/glob-seas-prob
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Frobability of tercile categories Feb /Mar/Apr Issued Moy 2013
above—nermal Z2m temperature

Figure 2a-c Maps illustrating predicted likelihood of 2m temperatures falling into above average (a),
near average (b) and (c) below average tercile categories. Reproduced from the Met Office website

As is explicitly noted on the Met Office website, the visualisations represent raw data and
should not be taken to constitute forecasts for a given area. However, they do illustrate one
way of presenting uncertain information. The three maps represent the predicted likelihood
that temperatures will fall into the upper, middle and lower tercile respectively. Here red hues
are used to represent higher likelihoods, with the deepest red corresponding with the highest
category of likelihood, while blues represent lower likelihoods (with deeper blues
corresponding with lower likelihoods). The same information as a two-category map (e.qg.
predicted likelihood of temperature being above normal) and highest and lowest quintile (e.g.
predicted likelihood of temperature falling into the highest or lowest 20% category). The
benefit of representing terciles and quintiles in this way is that the predicted likelihood of the

EUPORIAS (308291) Deliverable 33.2 Page 33



variable of interest falling each category can be presented. However, it also comes with the
difficulty of multiple maps being required, thus potentially making comparisons more difficult.
This form of representation also brings with it the question of how colours should be utilised
to depict likelihoods. Using the same colour scheme for each map permits visual
consistency, thus potentially facilitating comparison between maps. However, it may also
confuse when the colours utilised have strong existing associations (for instance, when
highly saturated reds are used to depict a high likelihood of lower than average
temperatures).

Tercile information may also be displayed on a single map. One way of doing this is to

di splay the predicted |Iikelihood of the dédmost |
example of this, provided by IC3, can be in Figure 3 below. Here red, yellow and blue scales

are used to depict upper, middle and lower terciles respectively. This format requires a more

complex colour-scheme, but enables a consistent use of colour for different variable

magnitudes. I'n this case bluaenabhwaysagedr wespgoB@Ss

Below normal (%) Normal (%) Above normal (%)

4 55 70 85 100 40 55 70 85 100 40 55 70 8 100

Figure3iProbabi |l istic forecast of most Ilikely tercile fc¢
where forecasts probabilities of all 3 categories are below 40% and approximately equal. Transparent

areas indicate where the obser Visualisaton and Xt ptovided by mat c h t
IC3.

An extension of this visual approach is used by Lowe et al. (2012) in their visualisations for
Dengue fever forecasts (Figures 4a - b). In this case however colour is determined by a set
of three coordinates reflecting predicted probability of Dengue incidence rates falling into
lower, middle and upper terciles, Hence, stronger shades of blue, yellow and red correspond
with greater probability of incidence rate falling into lower, middle and upper tercile
respectively. Saturation is also used here to display information gain relative to a reference
forecast (e.g. how much the forecast differs from historical observation).
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Figure 4 (a) Dengue fever incidence rate (DIR) forecast. Colour assigned to each region of the map is
based on coordinates corresponding with predicted probability of DIR falling into the lower, middle or
upper tercile. Saturationalsod enot es 06 i nf elativedotaireterencgfarecast(labelled with
an X). (b) Observed DIR represented as Low, Medium or High tercile. Figures reproduced from Lowe
et al. (2012)

Other ways of using a single map to present tercile information include superimpose bar
graph representations of the proportion of ensemble members falling into upper, middle and
lower terciles onto a map, or using glyphs where length corresponds with the predicted
likelihood of a variable falling into a particular tercile category (Figure 5). By providing details
about all three terciles these visualisations increase the amount of information about each
region available to users. Whether this additional information is of benefit to users is likely to
depend on the details of interest to decision makers (e.g. whether users wish to receive an
overview of the likelihood of all states or simply information about possible extremes).
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Figure 5 Tercile-based probabilistic precipitation forecast depicted using glyphs. The arm length of
each glyph correspond to probability of upper, middle and lower tercile respectively (left, bottom and
right arms). Hence, a longer right arm corresponds with greater predicted likelihood of lower than
average precipitation. Image reproduced from Slingsby et al. (2009).
http://www.gicentre.org/papers/gisruk09/climate.pdf.

Each of the map styles discussed has benefits and limitations, and given the diversity of user
needs and statistical knowledge there may not be an optimal format. More empirical
research is however needed to determine which formats work best in which context

3.4.1.2 Colour scheme

As touched upon above, when constructing maps, or indeed any other form of visualisation,
to represent climate information, it is important to consider both visual salience and pre-
existing connotations. Colour schemes featuring red and green may be inaccessible for
those with colour-blindness, while the use of a large number of hues may render it displays
confusing and difficult to interpret (e.g. Kaye et al., 2012). Kaye et al. also raise the point that
where saturation is used to denote differences in likelihood or magnitude, subtle variations in
shade may not be obvious when areas of the same hue are far apart.

With respect to pre-existing connotations, red and blue in particular are colours that have

strong associations with certain climate variables, with red being associated with heat and

blue with both cold and water. Hence, a visualisation where blue corresponds with higher

temperatures or lower precipitation may lead some users, especially those with less

experience of using said visualisations, to misunderstand the information presented. The use

of white may also be contentious, with some associating it with missing information, others

with 6middle rangebé, and others with éno signal &
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made in the recent Work Package 33 user needs survey. As noted in the previous section
however the fact that some colours have different connotations in different disciplines likely
precludes the creation of a scheme that can be perfectly intuitive for all users.

When presenting multiple maps, each representing a different measures or climate variable
in the same, a question arises as to whether a single colour scheme for all. As previously
noted, consistency may cause a problem when usage is counterintuitive. However, the use
of a different colour scheme for each measure may confuse if many measures are being
presented. Once again, this highlights the need for appropriate user testing.

3.4.1.3 Temporal dimension

While maps provide an excellent format for viewing information spatially, it is perhaps more
of a challenge to incorporate a temporal dimension. One option is, of course, to present for
different timeframes side-by-side or as a slide show that users may click through. Another
method is to present change over time as an animation. This format has been piloted and
discussed by Slingsby et al. (2009), who report a favourable response on the part of users.
Although, as Slingsby et al. note, one concern with using animation in this way is that
smooth transitions from predictions at one timeframe to the next may create the illusion of
continuity.

3.4.2 Graphs

While maps enable spatial elements of information to be clearly and directly illustrated it is,
as previously noted, a challenge to present temporal information in this manner. Likewise,
maps do not offer a straightforward way to present ranges, confidence levels and other
measures of di s p eSudchinformatignonay thusbe mareaedsily)depicted in
the form of graphs. Of the types of graph available for this purpose, some enable temporal
continuity (e.g. spaghetti plots, fan graphs) while others depict timeframes discretely (e.g.
probability density functions, cumulative density functions, error bars, box plots). In the
recent EUPORIAS Work Package 33 user needs survey, both fan graphs and error bars
received generally high favourability ratings. Although, it is worth noting that they were
significantly less popular amongst those reporting lower comfort with statistics.

3.4.2.1 Spaghetti plots

Spaghetti plots are commonly used to depict the trajectory of all ensemble members over
time. The examples in Figure 6 illustrate how they may be used to display predictions with
low-to-moderate and high dispersion. As has previously been noted however, while they
provide a clear indication of where extremes lie, they may render the overall distribution less
visually salient (Dettinger, 2009).
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Figure 6 Spaghetti plots illustrating low to moderate and very high dispersion. Examples provided by
Jean-Pierre Ceron, Meteo France.

3.4.2.2 Continuous confidence intervals and fan graphs

Continuous confidence intervals and fan graphs provide a way of illustrating confidence
levels over time in a continuous manner. In a fan graph different levels of colour saturation
are typically used to depict the range of values covered by 50, 70, and 90% confidence
levels (with some also indicating a 100% limit). In some visualisations just the upper and
lower bounds of a 90 or 95% confidence interval alone are shown, with a line indicating a
measure of central tendency. In Figure 7 below a fan graph is used to represent the spread
of a climatological reference (i.e. historical observations) for a seasonal temperature
forecast.
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Figure 7 Example of a fan graph representing the range of a climate reference (i.e. historical
observations) overlaid with boxplots representing range of a seasonal prediction. Visualisation
provided by Jean-Pierre Ceron, Meteo France.

More complex diagrams utilising the same underlying format may also be constructed. In
Figure 8 below multiple areas of concentration are depicted on the vertical axis. This
highlights the fact that the distribution has multiple peaks, an element that is obscured in the
standard fan graph, creating the impression of a unipolar distribution. However, this increase
in complexity may bring with it a loss in salience. Once again the issue of richness versus
ease of understanding has to be considered. Those with good statistical understanding for
whom the recognition of multiple peaks has operational use may find this level of detail
helpful. On the other hand those with lower statistical knowledge, or those simply seeking to
establish upper and lower thresholds, may find that it renders visualisations difficult to
interpret. Another factor to consider is, of course, the degree of detail that can be reasonably
supported by the forecasting system. A very high degree of detail may lead users to
overestimate the level of resolution offered by the system. Once again, it is important to
consider both user expertise and context of use.
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Figure8fi Anomaly temperature forecasts issued from ECMWF
Visualisation and footnotes provided by Laurent Dubus, EDF.

Of course, while fan graphs can be used to depict confidence levels continuously, other
methods may be used to present them for discrete timeframes.

3.4.2.3 Probability density functions

When depicting the distribution of a single variable for a discrete timeframe probability

density functions (pdf) and cumulative density functions (cdf) offer the greatest amount of

detail and can facilitate the comparison of distributions (e.g. historical observations versus

current prediction) . As previously discussed however, research suggests that users with low

to moderate statistical experience may have difficulty in extracting certain information, such

as measures of central tendency, from these representations when they are not explicitly

marked (Ibrekk & Morgan, 1989). Nonetheless, they are commonly used by those with

greater technical expertise and statistical knowledge. Figure 9ill ust r at es how pdf 6s
used to compare climate predictions for a given period with climatology.
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3.4.2.4 Error bars, boxplots and dots

Error bars are typically used to represent a single 90% or 95% confidence interval, with the
mean marked as a measure of central tendency. Hence, the detail regarding the distribution
is limited. Although, depending on the needs of the individual user, this level of simplicity
may be desired. Boxplots contain more detail, indicating 50% and 95% (or 100%) confidence
levels, with a measure of central tendency (usually the median) marked. Figure 8 above
depicts a set of boxplots (representing predictions) superimposed on a fan graph
(representing climatology).

Dots may also be used to display the distribution of ensemble members for a particular
timeframe, with each dot representing an ensemble member. This method is used in Figure
10 and 11 below to illustrate the spread of ensemble members relative to the spread of
historical (i.e. 30 year) observations. These visualisations, created as part of a suite of for
UK contingency planners, use the y-axis to depict absolute measures (i.e. predicted and
observed millimetres of precipitation) rather than anomaly. Figure 11 is a visually complex
diagram, containing dot spreads and pdfs, both of which are superimposed on a background
representing quintiles. Again, this raises the issue of the richness/simplicity trade-off. A rich
and complex diagram is likely to be more useful those with greater existing statistical
knowledge and graph literacy than those without. It is important to stress however that the
UK Met Office provide detailed instructions (in both written and video form) as to how these
visualisations can and should be used. Hence, the question of how much training users will
be given with respect to utilising visualisations also needs to be asked. In contexts where
more training can be provided, richer and less immediately intuitive representations may be
more appropriate than in situations where less guidance is possible.
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3-month UK outlook for precipitation in the context of the observed annual cycle
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Visualisation for contingency planners reproduced from the Met Office website
(http://www.metoffice.gov.uk/publicsector/contingency-planners)
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3.4.3 Reliability and skill

This section has thus far predominantly focussed on methods of visualising likelihoods,
magnitudes and dispersion in seasonal climate predictions. However, in addition to
effectively communicating o6fir sautpupitidadso® uncert ai
important that measures of reliability and skill are appropriately conveyed. In the recent Work
Package 33 survey a substantial minority of respondents currently using seasonal
predictions indicated that they did not currently receive information as to how predictions
compared to observations but would like to do so. A desire to receive information about how
different models compared with one another was also expressed. This indicates a pressing
need for information regarding reliability and skill to be clearly communicated. However,
doing this in a manner that can be easily understood by all users may pose a challenge.
Numerical measures of both reliability and skill may be calculated (e.g. as skill scores). For
less technical users however interpreting them may be difficult unless evaluative categories
and visual aids are also provided.

3.4.3.1 Visualising skill and reliability using graphs

One way of visually representing reliability is to plot prediction against observation on a line
graph (e.g. Figure 12). Here a perfectly reliable prediction would form a straight 45° line. That
is to say that where this perfectly reliable system indicates that there is a 60% chance of
temperatures being lower than average, lower than average temperatures would occur 60%
of the time that this prediction is made. The same information may also be plotted on a bar
graph (Figure 13). Skill may be represented using similar formats, with the reliability of one
prediction being plotted against a reference prediction.

For those lower in statistical understanding or graph literacy however such formats may
prove difficult to interpret. Likewise, those more familiar with determinist forecasts (where
predictions are either correct or incorrect) than probabilistic ones may also initially fail to
realise that where a prediction system assigns a 60% probability to the most likely tercile
occurring, the most likely tercile should not be observed 100% of the time. Again, the need
to ascertain where misunderstandings may occur and address them should be emphasised.
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Figure 12 Reliability diagram plotting observed frequency against predicted probability. The grey line
represents a hypothetical perfectly reliable forecast. Provided by Jean-Pierre Ceron, Meteo France.
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Figure 13 Reliability diagram plotting observed relative frequency against forecast probability.

Provided by Jean-Pierre Ceron, Meteo France.
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A visual comparison of predicted versus observed climate variables may be facilitated by
overlaying a line (or dots) representing observations on a fan graph representing model
predictions (i.e. the spread of ensemble members). A similar format may also be used to
compare the performance of several different models across a particular timescale (Figure
14). Although it should be noted that in the latter case increasing visual complexity in this
manner may make interpretation more difficult for less experienced users. Again, the trade-
off between increasing informational content and potentially reducing salience should be
considered in view of both who the users are and the amount of information required to
support decision making.

Drac@Sautet — one month lead time forecast
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Figure 14 River Flow Monthly Forecasts. A comparison of different types of probabilistic forecasts
plotted against observations (represented by green dots. Visualisation provided by Laurent Dubus,
EDF.

3.4.3.2 Visualising reliability and skill using maps

In addition to conveying predictions themselves, maps may also be used to convey

information regarding a) how well predictions have matched observed climate (accuracy in

the case of deterministic forecasts reliability the case of probabilistic ones); and b) how a

particular model has performed comparative to climatology or another reference forecast

(skill). This may be done using colour (Figure 15), transparency (Figure 16), or presenting

maps detailing O6predictiond an@Figireold,Seenrlsoat i ond/ or
Figure 4b). No definitive guide as to which particular format works best is however available

in the current literature. Once again, more research is needed to establish which visual

representations of reliability and skill work best in which context.
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Figure 15 AiSpring 10m wind resource CR probability skill score (ECMWF S4, 1 month forecast lead
time, once a year from 1981-2 0 1 Omage and footnote provided by IC3.
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