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1. Executive Summary 

Different EUPORIAS activities require global and regional (downscaled) predictions 

to build sector-specific indicators (WP22) and to feed different impact models 

(WP23) in agriculture, hydrology, energy, etc., among others. Since seasonal 

predictability strongly varies from region to region and from season to season, 

assessing the skill of state-of-the-art operational seasonal forecasting systems in the 

different regions of the world is a key task for these activities. This allows identifying 

the most suitable regions for impact applications on seasonal time-scales. Moreover, 

since several seasonal forecasting systems are available nowadays, it is also 

important to study the best approach to combine them into a single consensus 

prediction taking into account their performance on the target region and variable.  

This report describes the validation of global European seasonal forecasting 

systems: The operational ECMWF System4 and four models of the ENSEMBLES 

multi-model hindcast, which correspond to former versions of the current operational 

seasonal forecasting systems, including System3 (the validation of other operational 

models will be performed following the same procedure when they become 

available). Moreover, an assessment of the added value of calibrated/downscaled 

forecasts —obtained by means of different bias-correction and statistical 

downscaling techniques— is also performed. Global forecasts are assessed 

worldwide, whereas downscaling techniques are analysed in two target regions 

representative of the low and high skill patterns found in the global models (Spain 

and Philippines, respectively). Finally, different forecast combination techniques —

based on equal weighting, regression and Bayesian combination— are tested in the 

target regions, considering both global and regional predictions.  

The most important findings are:  

1) in agreement with previous studies, the skill of the global models 

analysed is mainly located in the tropics (particularly for 

precipitation) and no significant skill is found in Europe; 

2) important seasonally varying biases are found in the global models, 

thus requiring bias-correction/downscaling to be suitable for impact 

applications; 

3) statistical downscaling methods can improve global model outputs in 

some cases (particularly when the model is more skilful with the 

circulation variables than with the target one); however, bias-

correction methods do not improve model skill;  

4) No clear benefit is observed when applying model combination 

techniques (neither to the global model outputs nor to the 

downscaled values); thus, simple model combination obtained by 

equal weighting is recommended in general.  



 

EUPORIAS (308291) Deliverable 32.1 Page 5 

 

Finally, new operational models will be analysed when they become available 

through the ECOMS-UDG server, in order to explore the promising new high-

resolution hindcasts with potential new sources of predictability (e.g. the NAO in the 

GloSea5 model, with 0.25º ocean and around 60 km atmosphere; see e.g. Scaiffe et 

al., 2014). 

 

2. Project Objectives 

With this deliverable, the project has contributed to the achievement of the following 

objectives (DOW, Section B1.1): 

No. Objective Yes No 

1 

Develop and deliver reliable and trusted impact 
prediction systems for a number of carefully selected 
case studies. These will provide working examples of 
end to end climate-to-impacts-decision making 
services operation on S2D timescales.   

x 

2 

Assess and document key knowledge gaps and 
vulnerabilities of important sectors (e.g., water, 
energy, health, transport, agriculture, tourism), along 
with the needs of specific users within these sectors, 
through close collaboration with project stakeholders.    

x 

3 
Develop a set of standard tools tailored to the needs 
of stakeholders for calibrating, downscaling, and 
modelling sector-specific impacts on S2D timescales. 

x 

  

4 

Develop techniques to map the meteorological 
variables from the prediction systems provided by the 
WMO GPCs (two of which (Met Office and 
MeteoFrance) are partners in the project) into 
variables which are directly relevant to the needs of 
specific stakeholders.    

x 

5 

Develop a knowledge-sharing protocol necessary to 
promote the use of these technologies. This will 
include making uncertain information fit into the 
decision support systems used by stakeholders to 
take decisions on the S2D horizon. This objective will 
place Europe at the forefront of the implementation of 
the GFCS, through the GFCS's ambitions to develop 
climate services research, a climate services 
information system and a user interface platform. 

  

x 

6 

Assess and document the current marketability of 
climate services in Europe and demonstrate how 
climate services on S2D time horizons can be made 
useful to end users.   

x 
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3. Detailed Report  

3.1. Assessment of Global Seasonal Forecasts 

Seasonal predictability strongly varies from region to region and from season to 

season (see, e.g., van Oldenborgh, 2004; Doblas-Reyes et al., 2010). Therefore, a 

key task in EUPORIAS WP32 (uncertainty framework) is to globally assess the 

forecast skill of the seasonal forecasting models used in the different activities. The 

ECMWF System 4 seasonal forecasting system has been selected as the initial 

model to undertake this activity. The available System 4 hindcast is formed by 15 

members covering the period 1981-2010, and several variables have already been 

included in the ECOMS-UDG server 1  — a joint EUPORIAS-SPECS initiative 

developed to provide homogeneous hindcast information from the different 

operational European seasonal forecasting systems to the ECOMS partners.— This 

task will be updated in the coming months to include the validation results for further 

seasonal forecasting systems to be included in the ECOMS-UDG (e.g. GloSea5 by 

Met Office). We focus on precipitation and surface temperatures, which are the most 

demanded variables in impact applications.    

In order to compare results among different forecasting systems, we have also 

considered the state-of-the-art operational models from the EUROSIP initiative. 

However, due to data availability constraints only a limited number of studies have 

been performed by AEMET with this dataset. Therefore, we have also analysed four 

of the models included in the ENSEMBLES multi-model hindcast — the only 

homogeneous multi-model seasonal hindcast publicly available to date (Weisheimer 

et al., 2009).— These models (see Table 1) correspond to former versions of the 

current operational seasonal forecasting systems and, interestingly, the model from 

the ECMWF is System3, the predecessor of System4. The global validation of this 

multi-model hindcast has been performed in collaboration with SPECS, and the 

results have been already published in Manzanas et al. (2014b). In particular the 

global skill pattern found for precipitation (the only variable validated in Manzanas et 

al. (2014b)) is very similar to the one found when applying the same methodology to 

System4. Therefore, in this section we only describe the results for the latter. 

Table 1: Main components of the four atmosphere-ocean coupled models considered in this 

work. All of them contributed to the ENSEMBLES multi-model seasonal hindcast. 

Centre Amospheric model / Resolution Ocean model / Resolution 
ECMWF IFS CY31R1 (T159/L62) HOPE (0.3º − 1.4º/L29) 

IFM-GEOMAR ECHAM5 (T63/L31) MPI-OM1 (1.5º/L40) 
CMCC-INGV ECHAM5 (T63/L19) OPA8.2 (2.0º/L31) 

                                            

1  The ECOMS User Data Gateway (ECOMS-UDG) is based on a THREDDS server 
which allows friendly data access, both directly and through an R-package for homogenous 
data access. More information in http://meteo.unican.es/ecoms-udg 
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Meteo France ARPEGE4.6 (T63) OPA8.2 (2.0º/L31) 

Model assessment is performed gridbox by gridbox, calculating the bias, correlation 

and the Relative Operating Characteristic Skill Score (ROCSS) —a tercile-based 

probabilistic score which is not sensitive to model’s bias and is recommended by the 

WMO Lead Centre for the SVS-LRF2 for the verification of probabilistic seasonal 

forecasts.— In particular, one-month lead forecasts of precipitation and maximum 

temperature from System4 were validated for the standard seasons DJF, MAM, JJA 

and SON over the whole hindcast period (1981-2010). The 15-member ensemble 

mean was considered for bias and correlation, whereas the tercile probabilities given 

by the 15 members were considered for ROCSS. In the case of precipitation 

(maximum temperature), the model was validated against GPCC3 v5 at 1º (CRU4 ts 

3.10 at 0.5º). In both cases, System4 output was bi-linearly interpolated from its 

native 0.75º to the resolution of the observations. 

Figure 1 shows the bias (mean error) for precipitation (top) and maximum 

temperature (bottom). Wet/dry biases alternate in the different regions of the world 

for precipitation, whereas cold biases are predominant for maximum temperature 

(except in North America and East Asia). 

Figure 2 shows the Pearson correlation (computed upon the inter-annual time-

series). In agreement with previous studies, the highest correlations for precipitation 

are concentrated over tropical regions (see, e.g. van Oldenborgh et al., 2005). In the 

case of temperatures, trends can lead to artificial skill and, therefore, an alternative 

analysis for the de-trended series is given in Figure 3. In this case, skill spans over 

large regions of the globe. 

Figure 4 shows the ROCSS for the dry (left) and wet (right) terciles of precipitation. 

In agreement with the results found in Manzanas et al. (2014b), the most skilful 

regions are Northern South America (all seasons), the Malay archipelago and 

Oceania (during JJA and SON), South Africa (during DJF) and Middle East (during 

SON). There are also some spots of skill in Africa, in the Gulf of Guinea (in DJF) and 

Sahel-East Africa (JJA and SON), but the spatial significance of these latter regions 

should be further analysed. Finally, Figure 5 shows the ROCSS for the cold (left) and 

warm (right) terciles of maximum temperature (de-trended series).  

For the sake of simplicity, in the following sections we restrict the analysis to the 

case of precipitation. 

                                            

2  http://www.bom.gov.au/wmo/lrfvs/users.shtml 

3  ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata_download.html 

4  http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_ fe67d66a-5b02-
11e0-88c9-00e081470265 
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Figure 1: Biases for the 15-member ensemble mean for the whole hindcast period (1981-

2000) for (top) precipitation and (bottom) maximum temperature 
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Figure 2: As Figure 1, but for Pearson correlation 
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Figure 3: As Figure 2 (bottom), but for the de-trended series. Significant trends after a Mann-

Kendall test (at a 5% level) are removed both from System4 and CRU TS 3.10 for the 

computation of correlations 

 

Figure 4: ROCSS for the dry and wet terciles of precipitation for the whole hindcast period 

1981-2000. Only statistically significant (at a 5% level) ROCSS are shown. Blue points 

indicate grid-boxes where the corresponding tercile category has never been observed 



 

EUPORIAS (308291) Deliverable 32.1 Page 11 

 

 

Figure 5: As Figure 4 but for detrended maximum temperature. Significant trends after a 

Mann-Kendall test (at a 5% level) are removed both from System4 and CRU ts 3.10 for the 

computation of the ROCSS 

 

Finally, we want to remark that although no clear signals of skill have been found in 

the European region when analysing the System4 and ENSEMBLES models, 

promising results have been recently reported with more recent versions of seasonal 

forecasting (see e.g. Scaife et al., 2014). Therefore, work is in progress to collect the 

necessary information from some of these models (in particular GloSea5 from Met 

Office) and apply the same validation methodology used in this work in order to test 

the state-of-the-art skill in the European region. 

 

3.2. Assessment of calibrated/downscaled seasonal forecasts 

In this section we focus on precipitation and consider the multi-model ENSEMBLES 

hindcast (see Table 1). Each of the ENSEMBLES models in Table 1 was run four 

times a year —the first of February, May, August and November— for seven months, 
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considering an ensemble of nine initial conditions (nine members). Therefore, we 

analyse the standard seasons DJF, MAM, JJA and SON over the whole available 

hindcast period (1960-2000). We consider one-month lead predictions. 

Seasonal forecasts of precipitation are calibrated/downscaled on a member basis 

and are subsequently compared with the Direct Model Output (DMO) in terms of 

their performance (interannual correlation and bias). Given the low/high skill found 

for this variable over European/tropical areas (see Figure 4), we considered two 

target areas in these regions (Spain and The Philippines, respectively) where high-

quality observations were available. In both regions we considered 17 quality-

controlled gauges (see Figure 6) with daily information during most of the 

ENSEMBLES multi-model hindcast period. 

 

Figure 6: Location of the 17 gauges considered in each region (red points) 

 

A screening of predictors and geographical domains has been already conducted in 

Spain (Manzanas et al., 2014c) and the Philippines (Manzanas et al., 2014a) in 

Perfect Prognosis conditions —i.e., using ERA-Interim (Dee et al., 2011) reanalysis 

data for calibration— obtaining the following optimum configurations: SLP, T850, 

Q850 (for Spain), and U850, U200, T850 and Q850 (for the Philippines), defined in 

the geographical areas shown in Figure 6 — SLP=sea level pressure, 

T=temperature, Q=specific humidity, U=meridional wind; numbers refer to vertical 

levels in hPa.— These predictor configurations are used in this work. 

In order to explore the performance of different Statistical Downscaling Methods 

(SDMs), different techniques and configurations were applied and tested in the two 

target areas in collaboration with SPECS WP62 — the reader is referred to 
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deliverable D52.15 of SPECS for a review of the different types of techniques.— 

Finally, two different SDMs were considered in this deliverable.  

On the one hand, SDM1 is based on Generalized Linear Models (GLM), an 

extension of linear regression which allows for non-normal predictand distributions 

(see Nelder and Wedderburn, 1972, for an introduction; Brandsma and Buishand, 

1997; Fealy and Sweeney, 2007; Hertig et al., 2013). SDM1 follow the typical two- 

stage implementation used to model precipitation, consisting of a GLM with Bernoulli 

distribution and logit link for occurrence —equivalent to a logistic regression— and a 

GLM with gamma distribution and log link for the amount (see., e.g., Coe and Stern, 

1982; Chandler and Wheater, 2002; Abaurrea and Asin, 2005). As predictors the 15 

leading principal components (PCs; Preisendorfer, 1988) are used.  

On the other hand, SDM2 is based on the analogue method (Lorenz, 1969; Zorita 

and von Storch, 1999), a popular non-parametric technique based on the 

assumption that similar local occurrences are expected for similar — as measured 

by the Euclidean distance here— atmospheric configurations (Wetterhall et al., 2005; 

Brands et al., 2011; Cubasch et al., 1996; Timbal et al., 2003; Moron et al., 2008; 

Timbal and Jones, 2008). In this work, we use the standard configuration using the 

closest analogue. The 30 leading PCs are considered as predictor data.  

Similarly, different bias-correction techniques were applied. However, the results are 

very similar for all of them and, therefore, only results for the parametric method 

introduced by Piani et al. (2010) are shown in the following.  

In the work, the different methods are calibrated using predictors from ERA-Interim 

(i.e., under perfect prognosis conditions) during the period 1981-2005. Afterwards, 

local predictions are obtained by applying the trained methods to the predictors given 

by the different seasonal forecasting models, member by member during the period 

1960-2000.  

Figures 7 and 8 show the results obtained for Spain and the Philippines, 

respectively. For each gauge, the performance of the direct model output (DMO) —

the nearest gridbox in the model is considered—, the calibrated (Piani bias-

corrected) model output (BCMO) and the downscaled predictions obtained from the 

two SDMs considered (SDM1 and SDM2) were computed. For each region, boxplots 

show the spread of the results along the 17 gauges. Each colour (excluding yellow, 

which corresponds to the multi-model results) corresponds to a different forecasting 

system from those in Table 1 (see the legend). Performance is measured in terms of 

Pearson correlation and bias (left and right columns, respectively), both computed 

upon the inter-annual time-series (note that the statistical downscaling is performed 

on a daily basis). It is important to notice that both the bias correction and the 

                                            

5  http://www.specs-fp7.eu/SPECS/Deliverable_files/SPECS_D52. 1.pdf 

 



 

EUPORIAS (308291) Deliverable 32.1 Page 14 

 

statistical downscaling are performed for each individual member. Then, for each 

model, the nine different calibrated/downscaled predictions (nine members) are 

averaged into a single prediction obtaining an inter-annual series which is then 

validated. 

As can be seen from these figures, the mean error (bias) of the DMO is generally 

large for all models (especially in the Philippines, which might be due to a 

misrepresentation of the ocean-land interphase). In this case, results show that the 

BCMO yields nearly zero biases, whereas statistical downscaling techniques lead to 

small biases typically larger for SDM1 with opposite signs in some cases.  
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Figure 7: Performance of the raw/calibrated/downscaled seasonal forecasts for different 
models (see colors in legend) at the 17 gauges considered in Spain (see the text for details) 
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Figure 8: As Figure 7 but for the Philippines 

 

The correlation results show that the BCMO does not improve the correlation of the 

model in any case, being smaller in some cases. For the case of the SDMs results 

are highly dependent on the location, season, model and method. Broadly speaking, 

Figs. 7 and 8 depict the three different situations than can occur: 

1. The model exhibits no skill for precipitation and no skill for the large-scale 

circulation variables (SLP, T, U) —i.e. the model is not able to properly predict 
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the synoptic circulation — In this situation, SDMs will not provide any added 

value over the direct model output; 

2. The model exhibits no skill for precipitation but it is skilful for the large-scale 

circulation. In this situation, if there is a physical link between the large- and 

the local-scales, a good SD method might capture this link and provide some 

added value to the model output. However, it might also occur that this link 

does not exist (convective precipitation). In the latter case, SD should not be 

expected to yield a significant added value; 

3. The model exhibits skill for precipitation but not for the large-scale circulation. 

In this situation, SD is not appropriate. 

Our results suggest that condition 1 is what predominantly occurs in Spain (and in 

Europe in general) 6 . However, a wider range of situations takes place in the 

Philippines, which is why this region is an ideal test-bed for this kind of study. In 

particular, condition 2 might be the case in DJF and MAM, when SD gives some 

added value with respect to the DMO. Note that SDMs also yield better results in 

JJA; however, the correlations reached in this season are still very low. Condition3 is 

particularly interesting and might be the case of SON in the Philippines, where SD 

techniques provide worse results than the DMO. It can be seen that bias-correction 

is more recommendable in this case. 

The previous results indicate that the usefulness of calibrated/downscaled seasonal 

forecasts is limited by a number of restricting factors and, therefore, it should be 

assessed for each particular location/season/forecasting system/SDM.  

  

3.3. Combination of multi-model seasonal forecasts  

In general, when working with a multi-model ensemble of seasonal forecasting 

systems, one of the models will be preferable over the others for certain seasons, 

regions and target variables (see, e.g. Figures 7 and 8). Therefore, an important 

question in this context is finding the best way to automatically combine the model 

predictions in order to maximize the skill of the resulting consensus forecast. It has 

been demonstrated in several applications that the simple multi-model (denoted as 

MME and obtained by assigning equal weights to all models) improves the average 

performance of the individual models (see e.g. Doblas-Reyes et al. 2005, Wang et 

al. 2009, Weigel et al. 2010). 

However, more sophisticated model combination approaches have been proposed to 

take into account some measure of individual skill, as calculated from the past 

performance in a hindcast dataset. Some of the most popular model combination 

                                            

6 Note: the most recent seasonal forecasting models are shown to be better than older 

models in describing larger scale patterns over Europe and, therefore, the added value of 
statistical downscaling methods may be relevant for those models.    
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techniques include forecast assimilation (Stephenson et al. 2005), based on a 

Bayesian combination of the model predictions, and different forms of linear 

regression techniques (Doblas-Reyes et al. 2005), including super-ensemble 

methods (Yu et al. 2005). Although the relative merits of these multi-model 

combinations over the individual models have been shown in particular applications 

(specially considering sea surface temperature), most of the inter-comparison 

studies undertaken so far concluded that it is difficult to improve the MME forecasts 

(DelSole et al. 2012; Rodrigues et al. 2014). In particular, Rodrigues et al. (2014) 

conclude that further research is needed to analyse how combination methods will 

behave if applied to less predictable regions such as the extratropics or to other 

variables such as air temperature or precipitation.  

In this section we consider both the direct model and downscaled precipitation 

outputs in Spain and the Philippines computed in previous sections and analyse the 

performance of the most popular model combination approaches.  

 

3.3.1 Simple multi-model and multi-SDM approaches 

Yellow (shadowed) boxplots in Figures 7 and 8 correspond to the simple multi-model 

(MME) constructed by applying equal weights to all contributing models and 

members, i.e., by averaging the 4 (models) × 9 (members) = 36 predictions into a 

single prediction which was then validated. In addition, for each model (and for the 

MME), we also assessed the potential of an ensemble of SDMs (grey-shadowed 

boxplots). To this, predictions from SDM1 and SDM2 were averaged into a single 

prediction (SDM1-2), which was then validated. 

From these figures it can be shown that, in agreement with previous results, the 

MME yields generally slightly better results than any of the individual models. 

Moreover, the MME obtained by combining the two SDMs is also generally better 

than the individual SDMs, particularly in skilful seasons and regions (e.g. DJF and 

MAM in the Philippines). Therefore, the simple multi-model provides a successful 

benchmark. 

 

3.3.2 Model combination techniques: Regression and Bayesian combination 

In this section, we analyse the added value (with regards to the simple model 

combination, MME) of two representative model combination approaches: forecast 

assimilation (Stephenson et al. 2005; using the R package provided by the authors) 

and model weighting by least-square multiple linear regression of the observations 

on the anomaly values of the four forecast systems (see Doblas-Reyes et al. 2005). 

In all cases, a Leave-One-Out (LOO) cross-validation approach is performed, so the 

final combined series is obtained by joining the test results for each individual year 
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(the weight model is build in each case using the interannual series, excluding the 

test year).   

For the sake of simplicity we focus on the DJF season, both in Spain and the 

Philippines, where both global models and downscaling methods exhibit varying 

performances. In general, both model combination techniques failed to improve the 

performance (interannual correlation) of the simple multi-model both for the raw 

model outputs and for the bias-corrected and downscaled results. Each of the panels 

in Figure 9 shows in the first four boxplots the results over the 17 stations of the 

DMO, for the four individual models. These figures also show the results of two multi-

model combinations: simple multi-model (equal weights) and forecast assimilation 

(FA). These techniques are applied to the direct model outputs (DMO), the bias 

corrected outputs (BCMO), the two statistical downscaling methods (SDM1, SDM2), 

the ensemble formed by the two SDMs (SDM1-2) and the full ensemble (AlLL), 

including all the previous information. Each of these blocks is bounded by grey 

shade (the first boxplot corresponds to the simple model combination and the 

second to the FA method). This figure shows that, in general the simple multimodel 

approach is a convenient choice and no further improvement is possible in general 

with the alternative more complex techniques. Moreover, the performance of the 

model combination techniques seems to be higher over skilful regions (e.g. the 

example of Philippines) than over non-skilful ones (e.g. in Spain). 

 

Figure 9: Performance (Pearson interannual correlation) of the direct model outputs from the 
four ENSEMBLES models and for the simple multi-model and the forecast assimilation 

obtained for the raw/calibrated/downscaled seasonal at the 17 gauges considered in Spain 
(see the text for details) 

In order to further analyze this deficiency of the multi-model combination techniques, 

we performed the same experiment considering a stepwise linear regression for 

weighting each of the four models. We found that in most of the cases (particularly in 

Spain) the LOO cross-validated regression models did only include the predictors of 
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one of the models, indicating either a redundancy of the information and/or a lack of 

skill in the models.  

Finally, we run the linear regression models with no cross-validation and obtained 

very high correlation values (over 0.9 in most of the cases), indicating a clear 

overfitting and a lack of generalization in this case. Therefore, simple model 

combination using equal weighting is preferable in those cases with no previous 

knowledge of the problem. This simple technique would be particularly appropriate if 

the global models are carefully assessed in order to remove bad performing models 

which do not provide any added value to the ensemble.  

 

Table 2: Number of times (out of a total of 25, the number of years entering in the LOO 

cross-validation) that each one of the four global model outputs enter in the weighting linear 

regression for each of the stations (in rows) for Spain (left) and the Philippines (right). A 

stepwise regression has been used in this case, with significances 0.01 and 0.05 for entering 

and leaving the model, respectively. Note that a vector (25,25,25,25) would indicate that all 

global models have been used in all cases. 

Spain (precipitation, DJF)  Philippines (precipitation, DJF) 

ECMWF IFM CMCC MF  ECMWF IFM CMCC MF 

0 23 0 0  25 3 0 1 

0 0 0 0  0 0 0 0 

0 0 1 22  0 0 0 0 

0 0 1 0  0 0 10 15 

0 0 23 0  0 0 0 0 

0 0 1 0  0 0 1 25 

0 1 0 18  1 24 1 1 

0 0 0 24  0 2 0 23 

0 0 0 1  0 22 0 4 

1 0 23 0  1 10 16 0 

14 4 0 0  1 0 5 0 

0 22 0 0  1 24 0 0 

0 4 0 18  0 0 26 0 

0 0 0 3  0 26 0 0 

0 24 0 0  0 11 15 0 

0 0 24 0  0 8 16 0 

0 6 0 0  1 1 6 0 
 

3.3.3 Model assessment and combination with EUROSIP data 

AEMET has focused its activity for this deliverable on estimating the skill of state-of-

the-art operational seasonal forecast models. Direct precipitation and temperature 

outputs from four models —ECMWF System4, Meteo-France System 3, Met Office 

System3 and National Center for Environmental Prediction CFSv2— were available 
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for AEMET from the EUROSIP consortium for the common period 1988-2008 period 

and have been downloaded and homogenized over the Iberian Peninsula and other 

Mediterranean regions (France, Italy and the Balkans). Model combination using the 

forecast assimilation approach (Stephenson et al. 2005) has been also performed. 

Note that this work complements the assessment studies reported in previous 

sections considering a state-of-the-art hindcast of operational seasonal forecasting 

systems over Spain. 

The E-OBS gridded dataset has been used as observational data (Haylock et al. 

2008). The resulting anomaly values have been upscaled to 1º x 1º horizontal 

resolution. The multi-model forecast assimilated results have been computed 

considering LOO cross-validated series, using the same software of the previous 

sections. A set of deterministic and probabilistic verification scores has been 

computed (RPSS, ROC area and BSS) additionally to deterministic scores. Also 

statistical significance of the results has been quantified with a p value estimated 

using a nonparametric bootstrap method. 

 

Figure 10: Pearson correlation coefficient computed for the Iberian Peninsula domain using: 

direct output seasonal forecasts from four models (A: ECMWF System4, B: MF3, C: 

UKMO3, D: CFSv2) and forecast assimilated (FA) outputs (first row). Significant values are 

also estimated (* p-value 0.05, # p-value 0.10) 

 

Figure 10 shows an example of the results obtained from this study for the case of 

precipitation (extended information of this work is available in the EUPORIAS wiki7). 

In this case Pearson correlation coefficients for one-month lead-time seasonal 

precipitation forecasts in Iberia are displayed for the four models and for the forecast 

                                            

7  https://euporias.wikidot.com/local--files/wp32- 

meeting20140401/WP32_Progress_report_AEMET_Apr2014.pdf 
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assimilated multi-model. From this figure it can be seen that, in general, the model 

combination technique does not improve the performance of the individual models, 

with the exception of the summer months. Note that, as opposite to the previous 

sections, in this case the validation is performed at a regional level and, therefore, 

the aggregation can influence the validation scores (by increasing or decreasing the 

signal, if any). 

Therefore, no clear benefit has been obtained when using forecast assimilation as 

compared to the individual model outputs and to the simple multi-model combination.  

 

3.4 Peer reviewed articles and planned future publications 

Currently, two publications (listed below) have been produced with partial results 

from this deliverable, both in collaboration with SPECS. Moreover, there are plans to 

submit two additional publications during the coming months: 1) results from the 

forecast assimilation in Spain using EUROSIP hindcasts (led by AEMET); 2) 

validation of the downscaled results and model combination (led by UC). 

MANZANAS, R. AND FRIAS, M. D. AND COFIÑO, A. S. AND GUTIERREZ, J. M., 

2014b: Validation of 40 year multimodel seasonal precipitation forecasts: The role of 

ENSO on the global skill, Journal of Geophysical Research: Atmospheres, 119, 

1708–1719, doi:10.1002/2013JD020680 

           .              .                  .     L  E O   .     

L   O   .         E    E , J. M., 2014a: Statistical Downscaling in the Tropics is 

Sensitive to Reanalysis Choice, Under review in Journal of Climate. 
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4. Lessons Learnt 

The most important lessons learnt from this deliverable are related to the most 

important findings: 1) In agreement with previous studies, the skill of the global 

models analysed is mainly located in the tropics (particularly for precipitation) and no 

significant skill is found in Europe. 2) Important seasonally varying biases are found 

in the global models, thus requiring bias-correction/downscaling to be suitable for 

impact applications. 3) Statistical downscaling methods can improve global model 

outputs in some cases (particularly when the model is more skillful with the 

circulation variables than with the target one); however, bias-correction methods do 

not improve model skill. 4) No clear benefit is observed when applying model 

combination techniques (neither to the global model outputs nor to the downscaled 

values); thus, simple model combination obtained by equal weighting is 

recommended in general.  
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5. Links Built 

Parts of the work described in this deliverable have been done in collaboration with 

FP7 SPECS, in particular with WP62 (downscaling). Also, of importance it has been 

the collaboration with the data management tasks relative to the ECOMS-UDG 

server in order to automate the skill assessment work, so new models can be 

validated applying the same methodology when they become available.  

Links have also been established with other European initiatives, such as the VALUE  

CORDEX action. 

 

6. Versions and deviations from the initial plan 

A first version of the deliverable was prepared in April 2014. However, the analyses 

of model combination undertaken by AEMET (using forecast assimilation) in 

European regions (the most relevant for EUPORIAS) showed very low seasonal 

prediction skill and, therefore, it didn't show an optimal performance. UC has been 

preparing statistical downscaling methodologies (bias correction and perfect prog), 

prioritizing bias correction to early meet other EUPORIAS users' needs and working 

in collaboration with SPECS to speed up this task. Some of our downscaling 

experiments (considering the ENSEMBLES multi-model hindcast) have been applied 

to tropical regions, where the skill is much higher than over Europe. In order to 

provide a complete report on the assessment and combination of seasonal 

predictions, a 3-months delay was approved by the EC project officer and a new 

submission deadline was agreed for 31st July 2014. 

 


