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1. Executive Summary 
An important aspect of most seasonal prediction systems is that the models are initialised 

using recent observations of various aspects of the earth system, such as sea surface 

temperatures, land surface properties (notably soil moisture and snow) and other factors. 

Initialisation may therefore also be an important aspect for using impact models driven by 

the outputs of seasonal prediction systems.  This report summarizes findings on the 

importance of initialisation for Work Package 23 of the EUPORIAS project. Key findings are 

listed below: 

1. Literature studies show that the impact of initialisation model outputs (and its relative 

contribution to overall skill) differs between types of impact models, differs between 

seasons and regions, with lead time and with variable; 

2. The literature studies discussed here are mainly for hydrology and there are 

generally fewer studies for other impact sectors. In hydrology, initial hydrological 

conditions can play a crucial role in overall impact skill; 

3. It may be important to consider socio-economic factors in initialisation and model 

setups for the work-package (for instance, dam operation rules and water demand), 

especially at smaller spatial scales; in addition it may be important to consider 

climate extremes which may not be represented in seasonal means; 

4. Studies performed by Work Package 23 partners generally confirm the literature 

findings in 1) above; hence the need for model spin-up and initialisation varies with 

sector/impact and model. In general the importance of initialisation and spin-up is 

greatest for hydrological models, and least for crop models. 
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2. Project Objectives 
With this deliverable, the project has contributed to the achievement of the following 

objectives (DOW, Section B1.1): 

No. Objective Yes No 

1 

Develop and deliver reliable and trusted impact 
prediction systems for a number of carefully selected 
case studies. These will provide working examples of 
end to end climate-to-impacts-decision making 
services operation on S2D timescales.  X   

2 

Assess and document key knowledge gaps and 
vulnerabilities of important sectors (e.g., water, 
energy, health, transport, agriculture, tourism), along 
with the needs of specific users within these sectors, 
through close collaboration with project stakeholders.      

3 
Develop a set of standard tools tailored to the needs 
of stakeholders for calibrating, downscaling, and 
modelling sector-specific impacts on S2D timescales. 

 X   

4 

Develop techniques to map the meteorological 
variables from the prediction systems provided by the 
WMO GPCs (two of which (Met Office and 
MeteoFrance) are partners in the project) into 
variables which are directly relevant to the needs of 
specific stakeholders.      

5 

Develop a knowledge-sharing protocol necessary to 
promote the use of these technologies. This will 
include making uncertain information fit into the 
decision support systems used by stakeholders to 
take decisions on the S2D horizon. This objective will 
place Europe at the forefront of the implementation of 
the GFCS, through the GFCS's ambitions to develop 
climate services research, a climate services 
information system and a user interface platform. 

    

6 

Assess and document the current marketability of 
climate services in Europe and demonstrate how 
climate services on S2D time horizons can be made 
useful to end users.     
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3. Introduction 
Despite the recent effort to develop underpinning climate prediction science for seasonal to 

decadal (S2D) predictions, there has been relatively little uptake and use of S2D forecasts 

by users for decision making in Europe (Dessai and Soares, 2013). On the other hand, there 

is a much longer tradition in applying seasonal forecast information for user applications in 

other parts of the World, notably in Africa, the USA and Australia (Hansen et al. 2011; 

Dessai and Soares, 2013); one notable exception is the use of precipitation forecasts for 

hydropower generation management by EDF (Dubus, 2012,2013). In part, this is related to 

the relatively limited skill of S2D forecasts in Europe; in contrast predictability in decadal 

hindcasts (forecasts of the past) is greatest in the Tropics (MacLeod et al. 2012). This 

illustrates the importance of understanding skill in user uptake of such products (Meinke et 

al. 2006; Davey & Brookshaw, 2011; Demeritt et al. 2013). However, it should be noted that 

accuracy, lead time, and appropriate spatial and temporal scale of S2D forecast information 

may not be the main (or only) factors influencing user uptake; potential economic and 

environmental benefits may be of greater importance (Marshall et al., 2011). In addition, 

probabilistic (ensemble) prediction systems are more commonly used in medium-range 

applications, which bring additional challenges in communicating forecast information to end-

users. 

The use of basic S2D forecast outputs (e.g. temperature, precipitation etc) has significant 

potential to support both shorter-term decision making (thus helping avoid potential risks and 

losses, and optimize profits), and longer-term climate adaptation plans in numerous sectors 

(e.g., agriculture, water, health and energy – Van der Linden and Mitchell, 2009). Further 

benefit could also be realized by providing information more directly relevant to potential 

users, such as changes in crop yields, river flows, and forest productivity which we refer to 

here as “impacts” for the purpose of this report. In addition, further processing of direct S2D 

forecast outputs and the use of impact models may improve the usability of S2D forecasts 

with weak skill (Dubus 2012, 2013). However, as noted above, the skill of S2D forecasts for 

impacts (as opposed to generic assessments of weather and climate skill) may limit the 

usability of S2D impacts products.  

S2D predictions of weather and climate can be derived both from statistical (or empirical) 

and dynamic models (Davey & Brookshaw, 2011). The former approach is usually based on 

regional historic relationships between climate variables; most recent dynamic approaches 

use fully coupled ocean-atmosphere general circulation models (CGCMs).  For instance, the 

Met Office Hadley Centre (MOHC) currently has two operational CGCM-based systems for 

S2D forecasting, the latest versions of which are both based on the HadGEM3 model: 

GloSea5 (Global Seasonal Prediction system version 5) and DePreSys (Decadal Prediction 

System).  

Some S2D forecasting systems, particularly the CGCM approaches, may include impact-

relevant outputs directly, for example via river flow models, soil moisture calculations, or 

estimates of vegetation productivity. Validation and skill assessment in these systems may 

also provide valuable information on the overall performance of the seasonal prediction 

system itself. For example, rivers integrate land hydrology over large geographic areas and 

are important sources of freshwater input to the oceans (Falloon et al. 2011). However, 
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drivers for, and focus of skill assessments for CGCM development versus impact (and user) 

application may differ.  

3.1 Approaches for estimating impacts from S2D forecasts 

As noted above, there is considerable diversity in the methods used to produce estimates of 
climate impact from S2D forecasts, including: 

1. Outputs directly from the CGCM models themselves (e.g. extreme temperature and 
precipitation, storm tracks and cyclones, soil moisture and runoff; as noted above, 
some CGCMs may include river flow or vegetation models, and so may produce 
estimates of river flow, vegetation productivity and other impacts). These are termed 
coupled or online approaches; 

2. Simple (offline) metrics derived from S2D forecast outputs (e.g. statistical 
relationships between temperature and crop yield, or rainfall and river flow; heating 
and cooling day requirements); a brief review for agriculture is provided by Hansen et 
al. (2006);  

3. Outputs from more complex (offline) impact models, using S2D outputs as their 
inputs (e.g. crop, hydrological, ecosystem or other dynamic models). Hansen et al. 
(2006) provide a review relevant to agriculture; and 

4. Classification and analogue approaches, as reviewed by Hansen et al 2006. These 
may include classifying the climate into certain typical phases or types (e.g. for 
ENSO – El Nino and La Nina) and then producing weather data from past years 
related to these phases (analogs) as input to impact models (or statistical 
approaches). Weather classification approaches are similar, but instead cluster 
historic data into particular circulation patterns or weather types. 

The primary focus of this report is on methods 1 and 3, particularly on complex (offline) 
impact models.  

3.2 General methodological issues for estimating skill in S2D impacts 

This diversity in potential methods implies that there may also be a range of potential ways 
of assessing skill.  An important consideration for evaluating skill of S2D impacts is therefore 
that the approach taken (including the variables studied and methods used) need to be 
relevant to the application in question. Examples of the potential range of phenomena to be 
evaluated could include (Falloon et al. 2013): 

 The occurrence of events (e.g. crop failure – yield below a threshold; the existence of 
a heat-wave, drought, or flood) 

 The magnitude and timing of events (e.g. river flow patterns, anticipated crop yield 
amount and harvest date) 

 The probability of particular events (in both categories above) occurring 
Furthermore, impacts themselves will be affected by different outputs of S2D forecast 
models (themselves with different levels of skill) in different ways, depending on their relative 
importance for the different sectors. In addition, even within one sector (e.g. energy), 
different processes will be affected to different extents by weather and climate events 
(Dubus, 2010).  

The methods for evaluating S2D impact skill require a broad consideration of various 
aspects of the impact estimation process (Challinor et al. 2005), including: 

1. Experimental design, especially how models are initialised and spun-up (e.g. 
Cosgrove et al. 2003); and experiments used for comparison with S2D hindcast 
impact estimates (e.g. impact models driven with observed climatology); 

2. Post-processing applied, including bias-correction and downscaling methods (see the 
section below for further details); 
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3. Statistics/metrics used for validation; different techniques may be needed for 
deterministic or probabilistic approaches (Falloon et al. 2013); and 

4. Observed data to be used for validation. For S2D hindcasts, the specific periods of 
data availability (e.g. yield time-series) may be important, since hindcasts are often 
only run for certain periods.  In addition, it may be necessary to correct observed 
data – for instance, technology trends lead to increases in yield with time regardless 
of climate (Challinor et al. 2005), and anthropogenic influences on river flow are often 
not included in impact models (Falloon et al 2011; Haddeland et al 2011). 

 

This report focuses particularly on 1. above, especially regarding model initialisation, as part 

of the “production chain” for seasonal impact assessments in the EUPORIAS project. 

3.3 Recent studies on the impact of initial conditions to forecast skill 

An important aspect of CGCM-based S2D prediction systems is that the models are 

initialised using recent observations of various aspects of the earth system, such as sea 

surface temperatures, land surface properties (notably soil moisture and snow) and other 

factors. The effect of initialisation uncertainties differs between (type of) impact models, 

differs between seasons and regions and is probably a significant fraction of the overall 

impact forecast uncertainty, or inversely its skill.  

There are generally more studies for hydrology compared to other impacts. Several studies 

have investigated the relative importance of initial hydrological conditions (IHCs) and climate 

forecast (model) skill (CFS) in the overall skill of seasonal impact forecasts. Several studies 

have applied an Ensemble Streamflow Prediction (ESP) approach to investigate this issue, 

both for the USA and globally (Shukla & Lettenmaier, 2011; Shukla et al. 2013).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: from Shukla & Lettenmaier (2011): schematics of analyzing influence of Initial 

Hydrological Conditions versus Climate forecast Skill on runoff forecasts 

Paired ESP and reverse-ESP experiments were used to assess the importance of IHCs and 

CFS in determining forecast skill. The ESP experiment gains all its forecast skill entirely from 

knowledge of the IHCs whereas in the reverse-ESP (rESP) forecast skill is derived only from 
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knowledge of the atmospheric forcings. Using the ratio of Root Mean Square Error (RMSE) 

in predicting cumulative run-off and mean monthly soil moisture of each experiment allowed 

identification of the variability of the relative contributions of the IHCs and CFS spatially 

throughout the year.  

Shukla & Lettenmaier (2011) studied the significance of initial conditions versus forecast 

quality in determining the skill of predicting six month cumulative runoff, using an approach 

schematised in Figure 1.  The ESP experiments of Shukla & Lettenmaier (2011) consisted of 

a land surface model driven with observed forcings until the forecast initialisation date thus 

generating the IHCs. During the forecast period, an ensemble of forcings was created from 

the time series of observations starting at the forecast initialisation date and continuing until 

the end of the forecast period. For rESP experiments, the IHCs on the forecast date were 

taken from each of the historical years of simulation and during the forecast the land surface 

model was run with gridded observations for that year.  

Shukla & Lettenmaier (2011) found that IHCs generally had the strongest influence over 

cumulative run-off and soil moisture over the first month of a forecast beyond which their 

influence decreases at rates depending on location, lead time and initialisation date (Figure 

2). Beyond one month, IHCs influence the cumulative runoff and soil moisture during spring 

and summer months, mostly over the western USA. CFS dominated both runoff and soil 

moisture forecast skill beyond one month mainly over the Northeast USA throughout the 

year. For the rest of the region, CFS dominated forecasts during autumn and winter. The 

relative contributions of IHCs and CFS had a first order relationship with the ratio of initial 

total moisture variability to the variability of precipitation during the forecast period. 

 

 

 

 

 

 

 

 

 

 

Figure 2: from Shukla & Lettenmaier (2011): Plot of the maximum lead (in months) at which 

Initial Hydrological Conditions dominate over Climate forecast Skill, for 6-month cumulative 

runoff forecasts, initialised on the beginning of each month 

Shukla et al. (2013) created ESP experiments with the VIC hydrological model initialised with 

true IHC and forced with an ensemble of atmospheric forcings randomly sampled from the 

period 1961-2007. In the rESP experiments, the model was initialised with ensembles of the 
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IHCs randomly sampled from the same climatological period. Each ensemble was then 

forced from the forecast date onwards with observed atmospheric forcings for the target 

year. IHCs were found to play a crucial role in determining seasonal hydrological skill 

globally.  

Generally, the contributions of the IHCs were greater than the contribution of the CFS over 

Northern Hemisphere during the forecast period starting in October and January (Southern 

Hemisphere – April and July), mainly over shorter lead-times. Over snow dominated regions 

the Northern Hemisphere IHCs dominate runoff forecast for up to six months during the 

forecast period starting in April. Overall the contribution of the CFS was higher than IHCs 

over the tropics throughout the year. The contribution of IHCs especially over the first month 

was greater for soil moisture than run-off.  

Cosgrove et al. (2003) initialised models with re-analysis, 100% wet and 100% dry soil 

moisture conditions and found that the ‘memory’ of the initial conditions varied regionally and 

was shorter for 100% wet initial conditions.  

 
Demirel et al. (2013) investigated the effect of uncertainty from model inputs, parameters 

and initial conditions on 10 day ensemble low flow forecasts. They used two hydrological 

models (GR4J and HBV) applied to the Moselle river. Forecasts were generated using an 

ECMWF model ensemble, consisting of 51 members, thus providing the uncertainty range of 

model inputs. The Generalised Likelihood Uncertainty Estimation (GLUE) approach was 

used to estimate parameter uncertainty. Part of the GLUE parameter set was directly linked 

to river water storage estimates, and the observed discharge on the forecast issue day were 

used to update model stores and reflect uncertainty in initial conditions.  

The GR4J model was found to overestimate low flows whereas HBV was more prone to 

underestimating low flows, especially if parameter uncertainty was included in forecasts. The 

forecasts of the HBV model incorporating input uncertainty resulted in the most reliable 

forecast distribution. Parameter uncertainty reduced the number of event ‘hits’, and the false 

alarm rate of GR4J was approximately twice that of HBV. In general, Demirel et al. (2013) 

found that parameter uncertainty had the largest effect on the medium range low flow 

forecasts, whereas the input uncertainty had the smallest effect. 

Koster et al. (2010) assess the relative contributions of early-season snow and soil moisture 

information to the skill of riverflow forecasts in a suite of land-modelling systems (four 

different Large Scale Hydrological Models, or LSHMs: VIC, Noah, Catchment and Sac) for 

the USA, using the snow and soil moisture information both together and separately to 

derive seasonal forecasts. They used river flow gauge observations which were “naturalised” 

to remove the effect of anthropogenic influences such as dams, withdrawals and reservoir 

evaporation. In their study, skill was assessed using the square of the correlation coefficient 

(r2) between the observed yearly time series of seasonal (March-July) river flows and the 

corresponding multimodel average time series during periods of overlap. In other words, skill 

was assessed in terms of reproducing observed interannual variability in streamflow and 

bias was not considered. 

Their skill analysis showed that early-season snow-water storage generally made the 

greatest contribution to skill for predicting variability in more northerly and mountainous 

catchments, but the contribution of early-season soil moisture was also significant in the 
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more southerly regions (Figure 3). Koster et al. (2010) suggest that the current land-surface 

models driven with large-scale meteorological data can produce estimates of soil and snow 

water storage that are useful for basin-scale prediction. 

 

 

Figure 3: from Koster et al. (2010): Streamflow skill levels in the Western United States 

achieved in the simulation experiments, plotted by basin. Skill is measured as the square of 

the correlation coefficient (r
2
) between MAMJJ total streamflows from simulations and 

corresponding (naturalized) measurements.                                  

The studies discussed above illustrate that the duration of the influence of initial conditions 

varies regionally, with lead time, season, forecast starting date and with variable (e.g. soil 

moisture, snow, river flow). 

4.Summary of progress under work package 23 

 

4.1 Implications of previous studies and deliverables D23.1/D23.2 for 

work package 23 

The work package has:  

 developed a prototype operational workflow to use the impact models in S2D 

forecast mode, both through defining ways to initialise the models via a workshop 

and series of reports (D23.1, D23.3), and through agreeing a modelling protocol for 

using seasonal hindcasts with the models. Most partners have set up their models 
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with observed forcing datasets as a baseline, and have begun to download the 

currently available seasonal hindcasts from the ECOMS portal; and 

 Begun to assess and improve the predictive skill of impact models by analysing 

simulations driven by seasonal hindcasts. For example, CETAqua have analysed 

sensitivity of water impacts to seasonal climate conditions and the Met Office have 

run crop simulations using GloSea5 seasonal hindcasts. The work package has 

produced milestone reports on low- and high-end impact events/case studies to 

focus on (e.g. discharge, crop yields, etc). 

As noted in section 3.3 above, recent literature studies have demonstrated that the effect of 

initial conditions varies regionally, with lead time and with forecast starting date, and is an 

important aspect to consider in seasonal impact prediction systems. Table 1 below 

summarises the impact models being used in Work Package 23 (WP23). A wide range of 

models are being applied, both across and within sectors, each with differing needs and 

potential benefits from initialisation. 

Following on from the workshop on model initialisation (and in D23.1 and D23.2) it was 

noted that impact models targeting systems that exhibit distinct memory effects (known or 

presumed) may need proper initialisation of their state variables at the start of a 

forecast/hindcast simulation. This may be expected to apply especially to models of 

hydrological systems where significant stores of soil moisture, snow and surface water in 

lakes/reservoirs/wetlands may reflect accumulated effects of past fluxes. Similarly this would 

apply to models of vegetation dynamics though probably more so for perennial vegetation 

(e.g. forests) than for annual vegetation and crops. As a result impact models for sectors that 

build on these, e.g. hydropower or forestry, likewise may be sensitive to initial states. 

Initialisation of impact models for systems that are sensitive to instantaneous weather 

impacts only, e.g. solar and wind power or tourism, on the contrary is likely to be relatively 

unimportant. 

The relative importance of initialisation, and its dependency on the nature of the impact 

model being used was confirmed by the workshop participants representing the various 

impact modelling groups, based on their expert judgement and existing literature. For the 

particular models used in the consortium the effect of various possible approaches towards 

initialising relevant state variables based on model spin-up, on climatology or on 

observations (e.g. remote sensing) needs to be assessed. It was agreed during the 

workshop (and noted in D23.1/D23.2) that sensitivity experiments would only be performed 

for those models where initialisation is considered critical. 

In D23.2, we proposed adopting an approach similar to that used in Shukla & Lettenmaier 

(2011) for exploring the sensitivity of the impacts models to initial conditions. This should 

provide a means of quantifying the uncertainty in model predictions that related to the value 

of the initial conditions as a function of lead time, start time in the seasonal cycle and region. 

Such sensitivity experiments can be done on full climatological skill statistics, i.e. for the full 

period for which the GloSea5 or System4 hindcasts are available, but also on (common) 

studies of particular events in specific regions. The latter may provide more insights as to 

why our impact models do or do not show skill in high/low anomalies in certain regions/lead 

times through detailed analysis of propagation of errors in initial conditions, forcing data or 

parameters. Selection criteria for case studies include that the impact anomaly (e.g. 
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anomalous crop yield) must be caused by a climatological anomaly. Regional stakeholder 

expertise may be needed to determine which events were driven by climatological rather 

than socio-economic effects (e.g. CAP reforms in the EU, or civil unrest in E-Africa).  
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Table 1: Impact models being used in EUPORIAS WP23 

Sector Model Forcing Scale Resolution Forecast Variables 

Agriculture JULES/ 

JIM 

MO 

WFD, CRU-NCEP  Global 0.5 degree and  

1.25*1.874 and 2 
degree versions  

Crop Yield 

Crop NPP  

River flow 

  GLAM crop 
model 

Leeds 

Daily Min and max 
temp, precipitation 
and solar radiation 

Regional (e.g. 
all of India, 
semi-arid 
West Africa, 
China)  

Typically 0.5 degree to 
2.5 degree grid cells.  

Crop yield 

Crop biomass.  

  LPJmL 

WU 

WFD Global 0.5 degrees Crop Yield 

River discharge 

Reservoir volume 

  CGMS 

WU 

 WFD Regional 25km Crop yield 

Hydrology VIC 

WU 

WFD Regional 0.25 degrees River discharge 

Water Temperature 

  MORDOR 

EDF 

ECMWF North Atlantic/ 
Europe 

2.5 degrees River flow 

  E-HYPE 

SMHI 

ERA-INTERIM 

with monthly bias 
correction against 
GPCC  

Europe 215 km2 Discharge 

Water quality 

  Coupled 
models for 
decision 
making at the 
river basin 
agency level 

CETaqua 

Seasonal forecast 
data 

River basin Various River flow 

System reliability 

Forestry GUESS 

Storm-Ips  

Lund 

Daily Temp, 
Precip, Radiation, 
Wind  

Europe  0.5 degrees or lower Risk of damage to forest  

Health Temperature 
related 
mortality 
statistical 
model 

IC3  

 ERA-Interim 
temperature     
  

Europe  NUTS2 administrative 
regions 

Mortality 
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Case study selection is also dependent on e.g. response options stakeholders may have 

had in any particular event depending on the outcome and skill of a forecasts would that 

have been available at the time. Stakeholder engagement is vital to the case study selection 

process, but may also influence the selection of appropriate skill metrics or their 

visualisation. 

D23.2 noted that possible sources for data to initialise hydrology and vegetation related state 

variables in the impact forecast models include the following (availability may differ as for 

historical data for hindcast initialisation or (near-) real-time data for real forecast 

initialisation): 

1. Real observations reflecting actual status at simulation start time or representing a 

climatological average for that moment in the seasonal cycle. For example, observed 

snow cover and snow depth from weather stations and/or satellite products, 

observed water levels in lakes reservoirs, soil moisture status from satellite products, 

vegetation status (biomass, LAI) from satellite products. Translation of observations 

to model variables is not always trivial. 

2. Assimilated products from other operationally run models. For example, soil 

moisture/snow status from (re)analysis products from the operational weather 

centres, or from off line assimilation systems (e.g. LDAS, GLEAM, etc.). Translation 

of variables between models may lead to (arguably relatively small) inconsistencies. 

3. Using appropriate spin-up times for the impact models themselves, forcing them with 

observed or (re-) analysed weather data. Translation issues mentioned above are 

naturally prevented. However, drift in the impact model may cause biased 

initialisation. 

4. ‘Guestimates’ of initial states. For example, at the end of the dry season in semi arid 

climates the soil moisture can simply be set to very low values. Crop models 

generally start from zero biomass.  

The second method was briefly discussed during the workshop on model initialisation. The 

impact models may be initialised with seasonal climate model forecast output. However, 

problems may arise as the latter models are tuned; i.e., soil moisture from the seasonal 

climate forecast model may not be appropriate to input to the impacts model as it has been 

adjusted to reduce biases in the 2m air temperature. In addition, literature suggests that 

initialisation from a different model may cause problems.  

For example, Cosgrove et al. (2003) initialised an hydrology model (MOSAIC LSM) with 

either soil moisture status taken from NCEP re-analysis, or starting with 100% wet and 100% 

dry soil moisture conditions respectively and found that the ‘memory’ of the initial conditions 

varied regionally (across the USA) and was shortest for re-analysis initialisation (0-18 

months, average nine months), about two years longer for 100% wet initial conditions and 

another two years longer for the 100% dry initialisation. These time scales roughly apply 

equally to total column, root zone soil moisture and evaporation. Spin-up to equilibrium was 

much sorter for soil temperature. Soil moisture memory varied strongly between climate 

zones and between different LSMs. Obviously, careful assessment of such effects needs to 

be done in case initialisation states are taken from independent models. In WP23, none of 

the partners is presently planning to use this method. 
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The third method from the list above is the preferred method to be used by the consortium 

members in EUPORIAS WP23 and WP31. Having discussed various observational 

datasets, it was decided that the Watch Forcing Data ERA-Interim (WFDEI) which combined 

the ERA-interim and GCPC products would be the most appropriate for spin-up and initial 

conditions and to produce a climatology of impacts. This dataset covers the 1979-2011 time 

period at 50 km resolution and daily (and if needed three hourly) resolution. With this 

dataset, all models can perform a single continuous run for the whole period from which 

initial states can be taken for the seasonal hindcast runs, for example being forced by the 

GloSea5/System4 data (Figure 4). There is additional consistency in this in the sense that 

also the seasonal climate forecasts from both GloSea5 and System4 are themselves 

initialised from ERA-Interim. This is the preferred approach ideally to be followed for all the 

impact models to be run for the European domain. For the agricultural models to be run for 

the East African domain the fourth method from the above list may optionally be used, as 

any carry-over of soil moisture and or crop status from the previous year is likely to be 

negligible. 

 

 

Figure 4: Schematic representation of modelling approach in EUPORIAS WP23 

 
In summary, the EUPORIAS WP23 and WP31 partners have agreed that: 

 Our overall aim is to provide the best model performance possible to meet 
stakeholder needs, rather than to perform a strict model inter-comparison 
experiment; 

 There is a need to perform sensitivity experiments test using to assess the effects of 
different climate model forcing data (with/without bias-correction), the effect of impact 
model initialisation uncertainties (using various sources, or arbitrary changes e.g. +/- 
20% soil moisture/snow values), and compare against our “best” forcing and 
initialisation estimates; 

 A common climatology (WFDEI) would be used for reference forcing and general 
initialisation. We would favour: 

o Spin-up using WFDEI, the period depending on the model being used. 
o Run using both raw and bias corrected seasonal forecast/hindcast model 

data; 

 Sensitivity experiments can be performed using full climatological skill statistics, but 
also on (common) studies of particular events (exhibiting both weather and impact 
anomalies, and the latter caused by the former, not e.g. socioeconomic conditions). 
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The latter may provide more insights as to why our impact models do or do not show 
skill through detailed analysis of propagation of errors in initial conditions, forcing 
data or parameters; and 

 Stakeholder engagement is vital to the case study selection process, but may also 
influence the selection of appropriate skill metrics or their visualisation.  

 

4.2 Progress in model initialisation for the water sector 

CETaqua have tested the use of seasonal predictions as input of the impacts models to 

predict the potential impacts. The first results have been commented to the project 

stakeholders. In particular, they have performed experiments to check the sensitivity of 

different type of impacts (reservoir filling, urban water demand) to seasonal climate 

conditions. The response to the climate drivers was analyzed over a range of different time 

scales for a small river basin in Spain (part of the Ebro river basin, Najerilla sub-basin with 

the Mansilla dam; Figure 5) and, regarding water demand, for an urban area close to 

Barcelona (Figure 6).  

 

Figure 5: Volumes in the Mansilla dam and releases for the period 2008-2012 

 

Figure 6: Monthly comparison between anomaly in temperature (red) and water demand (blue) 

for and urban area close to Barcelona, for the period 2004-2012 

Using the data available, CETAqua assessed the response of a sub-basin in the Ebro River 

basin to monthly and seasonal climate drivers. The objective was to estimate the inflow to a 

downstream reservoir (Mansilla dam). The preliminary tests performed by CETaqua do not 

show a very clear relationship between regional and local precipitation (at one weather 
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station in the basin) with the Mansilla dam filling (estimated from a downstream gauging 

station and the water level in the dam; Figures 6 and 7). Potential reasons are the non-

representativeness of the local weather data, the imprecision in the estimation of the inflow, 

and the great importance of various processes not considered and occurring at smaller scale 

(intense local precipitation, evapotranspiration, small aquifers, etc.). In this case, a well 

calibrated and initialised hydrological model would be necessary to estimate the future 

inflows for the dam. 

The usefulness of getting such inflow prediction for the Mansilla dam has also been 

assessed. It would be limited to some optimization of the energy production during the dam 

filling period. Indeed, the current management rules do not allow much flexibility since the 

main purpose of the dam is for irrigation (the dam should be filled before the irrigation period, 

which has been the case in the last 10 years) and since the size of dam do not allow 

pluriannual management (the dam fill and empty every year). In conjunction with AEMET 

and CETaqua it was decided to extend the geographical scope of the case study to cover a 

larger basin with pluriannual dam(s) and more data available. In terms of model initialisation, 

these findings imply that it may be important to consider socio-economic factors in 

initialisation, particularly for smaller scale basins, given the weak relationships found 

between seasonal climate drivers, reservoir filling and urban water demand. 

 

.  

Figure 7: Monthly comparison between estimated inflow to the dam and local rainfall data  

SMHI are using the E-HYPE hydrological model in WP23. The Hydrological Predictions for 

the Environment, HYPE, model is a semi-distributed rainfall-runoff model capable of 

describing the hydrological processes at the basin scale (Lindström et al., 2010). The model 

represents processes for snow accumulation and melting, evapotranspiration, soil moisture, 

discharge generation, groundwater recharge, and routing through rivers and lakes. HYPE 

simulates the water flow paths in soil which is divided into three layers with a fluctuating 

groundwater table. In addition, parameters are more linked to physiographical characteristics 

in the landscape, such as Hydrological Response Units (HRUs) linked to soil type and 

depths and vegetation. Elevation is be used to get temperature variations within a sub-basin 

to influence the snow conditions. The model requires information on terrain, soil and land 

use, lakes and reservoirs and irrigation as input, which, in this application, has been 

obtained from the global sources. 

Irrigation in HYPE is simulated based on crop water demands calculated either with the 

FAO-56 crop coefficient method or relative to a reference flooding level for submerged crops 

(e.g. rice). The demands are withdrawn from rivers, lakes, reservoirs, and/or groundwater 
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within and/or external to the sub-basin where the demands originated. The demands are 

constrained by the water availability at these sources. After subtraction of conveyance 

losses, the withdrawn water is applied as additional infiltration to the irrigated soils from 

which the demands originated. 

 

Figure 8: Domain of the EHYPE model 

Table 2: Data sources and characteristics of the model setup 

Characteristic/Data 
type 

Info/Name Provider 

Total area (km2) 8.8 million - 
No. of sub-basins 35408 (mean size 215 km2) - 
Topography (routing 
and delineation) 

hydroSHEDS  
(15 arcsec) 

Lehner et al. (2008) 

Soil characteristics Harmonised World Soil 
Database (HWSD) 

Nachtergaele et al. (2012) 

Land use 
characteristics 

CORINE Bartholomé et al. (2002) 

Reservoir and dam Global Reservoir and Dam 
database (GRanD) 

Bernhard et al. (2011) 

Lake and wetland  Global Lake and Wetland 
Database (GLWD) 

Lehner & Döll (2004) 

Irrigation Global Map of Irrigation Areas 
(GMIA) 

Siebert et al. (2005) 

Discharge GRDC, EWA and others (2690 
stations) 

http://www.bafg.de/GRDC 

Precipitation WFDEI (0.5o x 0.5o) Weedon et al. (2011) 
Temperature (mean, 
min, max) 

WFDEI (0.5o x 0.5o) Weedon et al. (2011) 

Snow cover area GlobSnow Weedon et al. (2011) 
 

http://www.bafg.de/GRDC
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The HYPE model setup for the pan European region (8.8 million km2; see Figure 8) is 

currently improved. The model has a spatial resolution of 35,408 sub-basins, i.e. in average 

215 km2 and is referred to as EHYPE. The model runs at a daily time step and is currently 

evaluated at 2690 discharge stations. The model is setup based on global available datasets 

which are listed in Table 2. Forcing data are based on the WATCH-ERA INTERIM (WFDEI) 

product. 

The EHYPE hydrological model needs initial conditions (level in surface water, i.e. 

reservoirs, lakes and wetlands, soil moisture, snow depth) that will be obtained by driving the 

model using observations for a spin-up period. The model can further run using pre-

calibrated model parameters. The model will be evaluated using the following performance 

criteria: 

 Root mean square error 

 Tercile probability 

 Outer quantile 

 Reliability diagrams 

 ROC scores 

In their investigation, SMHI aim to develop an impact model directly been useful to the end-

users; hence an adequate model performance in terms of discharge and other hydrological 

variables is important. EHYPE model is currently been setup and calibrated using observed 

discharge stations. A preliminary analysis of model adequacy focus on the Kling-Gupta 

Efficiency (KGE; Gupta et al., 2009). KGE values can vary between -∞ (poor agreement 

between modelled and observed data) and 1 (perfect agreement between modelled and 

observed data). Current results show an overall good performance over the entire European 

domain. Figure 9 illustrates the performance as a function of runoff coefficient and wetness 

index. This analysis points towards limitations of the current model setup and requirements 

for improvements. Similarly, Figure 10 illustrates the spatial variability of the KGE 

performance. 

 

Figure 9: Performance analysis based on the Budyko framework 

SMHI have also worked on improving the representation of WFDEI forcing data (i.e. 
precipitation and temperature) in the model in order to adequately estimate the sub-basin 
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mean fluxes. The difference between WFDEI and E-HYPE spatial resolution could result into 
under- / over-estimation of extremes; hence different spatial interpolation methods are 
investigated and their corresponding runoff is assessed. This process has already been 
completed. Substantial effort is currently also being input to improving the parameterization 
of the model and further improving the models performance over the hindcast period. The 
new improved E-HYPE version will become operational (hence replace the current existing) 
and will be tested within EUPORIAS.  

In particular, SMHI have refined the E-HYPE hydrological model which will have an impact 
on both the models initialisation and performance. The current operational version of E-
HYPE is based on HYPE model v. 4.3.1 (following version 4.1.0), which overcomes some 
technical problems and allows a better initialisation of state model variables. 

 

 

Figure 10: KGE EHYPE model performance 

In particular: 

 Spin up can be used to estimate the initial water level in the dams; 

 Alternative/additional processes are now present allowing a better representation of 

the hydro-climatic processes; hence extraction of additional variables; 

 Introduction of new performance criteria which are useful in the evaluation of 

hydrological forecasts; and 

 In parallel to model developments, SMHI have been working on the coupling of 

forcing data (mainly precipitation) and model.  

EDF's overall goal is to run their hydrological model (MORDOR) with seasonal forecasts, in 

order to test seasonal forecasts for hydropower production management applications. The 
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model will be run on a large set of 35 watersheds in France (Figure 11, Table 3), for which 

temperature, precipitation and river flow data are available (from both EDF’s own and 

confidential data sources). The idea is to run and/or compare different forecasting methods 

to provide river flow forecasts from 1 to 3-6-12 months ahead.  

The study will be based on previous achievements using ECMWF VarEPS’s monthly 

forecasts (Dubus, 2012), and results from Météo-France (Singla et al. 2012), and should 

consist in a comparison of different forecasting strategies. EDF will use different daily mean 

temperature and precipitation forecasts on these 35 locations obtained from: 

1. bias-corrected ECMWF S4 forecasts of Z700 & Z1000 + an analog method  dataset 

analog_ECMWF 

2. Météo-France’s SIM model’s (8 km grid)  dataset SIM_MF 

3. bias-corrected Météo-France S3 forecasts of Z700 & Z1000 + an analog method  

dataset analog_MF 

These three datasets should then feed the MORDOR hydrological model to get daily river 

flow forecasts up to 3-6-13 months (depending on the available data from the different SF 

systems). The basic objective is to run option 1 above, and possibly options 2 and 3 if there 

is enough time. In any case, the river flow forecasts (from 1 and possibly 2/3) will be 

compared to observations and to Météo-France river flow forecasts from their S3/SIM model. 

 

Figure 11: Map showing the set of 35 watersheds to be simulated using MORDOR 

ECMWF System 4 seasonal hindcasts have been downloaded (1981-2010) for Z700, Z1000 

over the North Atlantic / Europe sector. The reason for applying an analog method (1 above) 

is that direct temperature and precipitation forecasts at the local scale are not skilful enough. 
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Table 3: Watersheds to be simulated using MORDOR 

 
 

The analog method for producing precipitation and temperature forecasts is that briefly 

described in the proceedings of the ECMWF 2012 seminar (also used in Workpackage 21): 

http://www.ecmwf.int/publications/library/ecpublications/_pdf/seminar/2012/Dubus.pdf. This 

stage includes an evaluation of the Z700/Z1000 forecasts with respect to reanalysis 

(ERAinterim and/or NCEP), and an evaluation of the temperature/precipitation forecasts on 

the watersheds. 

The impact (hydrological) model will be run by the EDF operational hydrometeorological 

forecasting division once they are provided with the analog dates and 

http://www.ecmwf.int/publications/library/ecpublications/_pdf/seminar/2012/Dubus.pdf
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temperature/precipitation forecasts. The joint analysis of results will include comparison with 

Meteo-France's hydrological forecasting chain. 

The MORDOR hydrological model needs initial conditions (water/snow stocks, water level in 

reservoirs, etc) that will be obtained from observations. It then needs temperature and 

precipitation forecasts, which will be obtained from the different options described above. 

Therefore, there is no specific need for a spin-up of the model. 

However, in order to get the best possible results, the input variables of the analog method 

and/or the MORDOR model need to be as good as possible. The main requirement for this 

study is then to have geo-potential height, and/or temperature and precipitations forecasts 

which are bias corrected. A further calibration of the temperature and precipitation forecasts 

would provide added value. 

EDF’s approach to initialisation is therefore: 

1. to use bias-corrected / calibrated Z700 and Z1000 forecasts over the North-Atlantic / 

European sector, from ECMWF S4 and possibly Météo-France S3; 

2. to get help on calibration of temperature & precipitation forecasts (either 

scientific/technical advice or ready to use R routines) 

Figure 12, from Dubus (2012) illustrate the effect of initialising the MORDOR model with 

numerical weather prediction (NWP) values of temperature and precipitation, obtained from 

the ECMWF monthly forecast system, combined with EDFs analog method. It shows, for 

each week from October 2004 to April 2010, different forecasts of the monthly cumulated 

inflow for the Drac river at Sautet hydropower station. The grey curves correspond to the 

climatological distribution of river flow; the red curves are the forecasts obtained with the 

MORDOR hydrological model, when it is forced with historical time series of temperature 

and precipitation (~50 years); the blue curves are the MORDOR forecasts, forced with the 

temperature and precipitation forecasts obtained from ECMWF monthly forecasts + EDF’s 

analogs method; green dots are the observations. In both cases, the MORDOR model is 

initialised with observed conditions for snow cover, and reservoir levels etc. The only 

difference between red and blue curves is that in the latter case, the actual dynamical 

forecasts are taken into account, rather than the climatological view based on historical time 

series. The plot shows that, particularly during in autumn, when the snow stock has melted, 

initial conditions weakly constrain the hydrological model (contrary to late winter/early spring, 

when the flow is mostly determined by the snow stock in mountains), and that the current 

NWP forecast brings valuable information, and strongly reduces the uncertainty in the 

forecast.  

On average over the 43 french watersheds where this model was tested, there is an 

improvement up to week four, in particular for the most extreme quantiles (Figure 13). 

A preliminary study has shown that for seasonal lead times, the extension of this method 

based on Z1000/Z700 large scale forecasts and the analogs methods may have a positive 

impact as well, but the bias in the Z1000/Z700 forecasts need to be removed.  
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Figure 12: weekly forecasts of the monthly cumulated inflow on Drac river at Sautet 

hydropower station. Grey: climatological distribution of the inflows; red: MORDOR model 

forced by historical time series of temperature and precipitation; blue: MORDOR model forced 

by ECMWF monthly forecasts (Z700/Z1000) + analogs method; green dots: observations 

 

 

 

Figure 13: Improvement in Relative Operating Characteristic Skill Score (ROCSS) for river flow 

forecasts over 43 watersheds in France, with the ECMWF/analogs method (analog) compared 

to the use of historical temperature/precipitation time series (ref) for different quantiles of the 

forecast distribution, and for the 4 weeks of the monthly forecast 
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Figure 14: MeteoFrance hydrological forecast results for spring (MAM), comparing the 

HydroSF and RAF methods (Singla et al. 2012), with initial conditions for 1
st

 February. Results 

are compared using spatial representation of time correlations over 1960-2005. left panel: soil 

water index; right panel: river flow 

 

 

Figure 15: MeteoFrance hydrological forecast results for summer (JJA), comparing the 

HydroSF and RAF methods (Singla et al. 2012), with initial conditions for 1
st

 April. Results are 

compared using spatial representation of time correlations over 1960-2005. left panel: soil 

water index; right panel: river flow 
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Figure 16: Summer results (JJA) for the Hydro-SF method, showing the spatial correlation for 

monthly river flows as a function of initial conditions (top row – April initial conditions; bottom 

row – May initial conditions) over the months June, July and August 

 

 

Figure 17: Illustrating the effect of initial conditions on MeteoFrance hydrological simulations. 

Correlation for soil water index (SWI) and river flows over the 1979-2007 period (HYDRO-

SF/ARPEGE-S3) using different initial conditions for the summer forecast (JJA). correlations > 

0.3 are significant. 
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Meteo-France started the production of the impact variable hindcast using the downscaled 

data provided in the WP21. Two seasons were investigated first; the Spring and Summer 

seasons as they are crucial in term of water resource management. These results will be 

extended in the next for other periods of interest. A hindcast of 30 years was issued for both 

the Soil Wetness Index (on an 8 km grid over France) and the River Flow (for more than 900 

stations along the rivers). These hindcasts (termed Hydro-SF) were evaluated against a 

relevant hydrological reanalysis (so called SIM reanalysis) which was validated against 

observations (also making a contribution to D23.4). Both probabilistic and deterministic 

scores were computed. In addition, to demonstrate the added value brought by such a 

forecasting suite, a specific experiment using random atmospheric forcing (and so call RAF 

experiment) was prepared. The same scores for these experiments were also performed.   

The SWI and River Flow hindcasts for MAM and JJA are available to Project partners for 

case studies. Figures 14 and 15 illustrate that the relative value of the full hydrological 

forecast method (Hydro-SF) compared to using random forcings (RAF) varies with season, 

region and variable.  

Figure 16 illustrates the effect of initial conditions, showing that better simulation of JJA river 

flows results when using May initial conditions compared to April initial conditions, and in 

general, better river flow prediction is found in July for the Massif Central region. Similarly, 

Figure 17 shows a clear improvement in hydrological forecast correlations when driving the 

model with April, rather than March initial conditions; in general, little usable information 

appears to be provided from the impact forecast before the beginning of April. 

Wageningen University has worked on setting up the VIC and LPJml models for hydrological 

forecasts in Europe (initially; later perhaps also for East Africa).  Both have been run with 

WFDEI forcing to provide a base run for initialisation of the hindcasts and as reference. The 

base run has been validated against an observed discharge dataset based on GRDC 

augmented for some basins. Presently, WU are developing scripts to perform the hindcast 

runs starting with System4 data.  

The System4 hindcast has been downloaded from the ECOMS-UDP, re-gridded to 0.5o, 

reformatted to NETCDF conform protocol, a land mask applied and re-organised to one 

annotated file (with all variables) for each forecast (i.e. a total of 5400 files = 360 7-month 

forecasts x 15 members). These can be made available to other partners upon request. A 

bias and skill assessment has been performed for selected grid boxes across Europe (see 

WP31/32 reports). 

Figure 18 shows examples of the performance/validation of both VIC and LPJml models for 

a selected basin. The highly variable temporal coverage of observed data in GRDC may be 

somewhat problematic for validating the model outputs. 

 



 

EUPORIAS (308291) Deliverable 23.3 Page 30 
  

 

Figure 18: Example discharge validation LPJml forced by WFD for the Tisza. The bottom-

centre figure presents the skill (HansenKuiper score) for above/below normal discharges 

using the reference forcing, setting the target for the hindcast ensemble 

 

4.3 Progress in model initialisation for the agriculture sector 

The University of Leeds have been getting GLAM-maize ready to simulate yields in East 

Africa. This has involved checking through the code and contacting the different people 

working on GLAM-maize and making sure that the model version has all the relevant 

updates and recent bug fixes. Appropriate parameter values for maize in East Africa are also 

being assessed, and a strategy for dealing with the many different maize varieties grown 

across the region is being developed. In collaboration with Wageningen, a likely approach 

will be to categorise the huge number of maize varieties into a few distinct groups and then 

find suitable parameter values for each group of maize varieties. As discussed during the 

workshop and noted in D23.1 and D23.2, model initialisation is not likely to have a significant 

impact in the GLAM model for crop production in East Africa. The approach proposed will be 

to assume that the soil is completely dry at the end of the dry season/start of the rainy 

season, and observed weather from the start of the rainy season until the forecast date. This 

is a valid approach since generally-speaking; in tropical regions the soils are dry at the 

beginning of the crop season. However, as noted in D23.1, for crop modelling studies in 

Europe the impact of snow cover on crop (winter wheat) productivity may be significant and 

therefore crop models could be sensitive to initial snow conditions.  
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The Met Office has begun to use GloSea5 seasonal hindcast data with the JULES impact 

model, and to assess the impact of data disaggregation on model results. The latter work is 

particularly important since sub-daily driving data, needed for running the JULES model, 

may only be available from a more limited set of seasonal hindcasts. The Met Office has 

also been working on developments to the JULES model, including on the JULES_crop crop 

model, on including an inline forcing data disaggregator, on adding a crop product pool, and 

enabling spatially varying heights of forcing data in the model. Further work is also ongoing 

to include an irrigation scheme which will eventually include both demand (crop requirement) 

and supply (removal of water from rivers and groundwater). The global-scale performance of 

the JULES-crop model has been assessed, driving the model with both CRU-NCEP and 

WFDEI forcing data. 

In particular, the Met Office performed a simulation using JULES-crop with CRU-NCEP-

forcing data for 1960-2009 with a 50-year spin up. CRU-NCEP has been used for initial tests 

rather than WFDEI because it takes less time to run, due to lower resolution, and also 

covers a longer time period (which will also lower the error on the correlations). The results 

from this simulation were then used to initialise a large number of smaller runs, also forced 

by CRU-NCEP. Each of the smaller runs finishes at the end of the calendar year, and the 

smaller runs start (for example): 

 15th Jan 1960, 15th Jan 1961, ..., 15th Jan 2009 

 15th Feb 1960, 15th Feb 1961, ..., 15th Feb 2009 

The initialisation used for each run was the climatology of the 21 days around the start date 

from the original run. In other words, all runs starting on the 15th January were initialised 

from the mean of 5th-25th January (inclusive) for 1960-2009. No spin up was used for these 

runs (although the first two weeks of each of these is technically spin up, since the 'main run' 

starts on the 1st of the following month, so that monthly means can be outputted). 

 

Figure 19: Comparison between observed (FAO) and modelled maize yields for France, using 

JULES-crop simulations with CRU-NCEP forcing for 1960-2009, as a function of initialisation. 

Blue dotted line: Correlation (Pearson correlation coefficient) of simulated yield versus FAO 

yield for CRU-NCEP-forced JULES-crop run for 1960-2009. Red bars: Correlation (Pearson 

correlation coefficient) of simulated yield versus FAO yield for the CRU-NCEP-forced JULES-

crop runs initialised by climatology each year. Each bar is labelled by the start date of the runs 
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We show an example of the results from this study for Maize in France (Figure 19). The 

sowing date used for maize in France is beginning of May, with a harvesting date of the 

middle of October (Sacks et al. The results show generally little impact of initialising the 

model with climatological (rather than “actual”) weather data in the early part of the season, 

until at least June/July when the correlation with observed yields begins to degrade.  

Initial assessment of results for maize in Ethiopia showed no significant correlation for the 

full CRU-NCEP simulation (correlation = 0.2, not significantly different from zero at 95% 

confidence level). This could be because the annual variability in Ethiopian yield depends on 

a wider range of factors than simply meteorological drivers, inaccuracies in the FAO 

observations for Ethiopia (as discussed in Greatrex (2012)), the parameters for maize used 

not being representative of Ethiopian maize, or a dependence on effects not modelled (e.g. 

water stress, high temperature stress).  

This study seems to suggest that JULES-crop maize runs can be initialised with climatology, 

without suffering a large reduction in skill, assuming that the results for France are more 

generally applicable. Assuming the model is driven by seasonal forecasts which have been 

bias corrected to WFDEI, this also implies that JULES-crop maize simulations runs for 

EUPORIAS can be reliably initialised using WFDEI climatology. The Met Office have already 

performed a global WFDEI-forced JULES-crop run with the right outputs to allow calculation 

of initialisation files. 

The Met Office and the University of Leeds have experimented with forcing GLAM with 

GloSea5 hindcast data for groundnut over West Africa, using the procedure formulated in 

Nicklin (2013) for use with the ECMWF System 3 hindcast. The model was initialised by 

assuming no soil moisture and no crop at the start of the rainy season and then running with 

observed weather from the start of the rainy season up to each hindcast start date, using the 

GPCP 1DD dataset for rainfall and ERA-Interim for temperature and solar radiation. The 

GloSea5 hindcast set had three start dates (25th April, 1st May and 9th May), 10 ensemble 

members for each start date, each with a run length of seven months. No bias correction 

was applied to the seasonal forecast and each ensemble member was used to drive a 

separate GLAM run.  

 

Model runs were carried out both with and without yield calibration, using a yield gap 

parameter (YGP) that acts to reduce the leaf area of the crop in order to reduce crop yields. 

It was not possible to fully calibrate yield in the north-west of the domain, where the 

observed yields were greater than the modelled yield even with no reduction to the modelled 

yield from the YGP. This could be due to a spatial bias in the seasonal forecast precipitation 

field, irrigation not being included in the model or a lack of spatial resolution in the yield 

observations. 

 

We carried out a preliminary evaluation using correlation maps, ROC curves, ROC scores, 

reliability diagrams and sharpness diagrams. These results indicate some skill in the 

prediction of crop failures although the forecasts were generally overconfident. Correlations 

between forecasted and observed groundnut yields were found to be typically higher in the 

western and northern regions and small or negative in the eastern and southern parts of the 

domain. 

 



 

EUPORIAS (308291) Deliverable 23.3 Page 33 
  

Wageningen University has worked on setting up the CGMS/WOFOST and LPJml models 

for agricultural forecasts in East Africa (with potential to perform later simulations for 

Europe).  Both have been run with WFD-EI to provide a base run for initialisation the 

hindcasts and as reference. The base run is presently being validated against an observed 

crop production dataset based on FAOSTAT, augmented with sub-national statistics for 

Kenya and Tanzania. Initially we will focus on Maize production, later other crops may be 

added (e.g. wheat, millet). Presently, we are developing scripts to perform the hindcast runs 

starting with System4 data.  

The System4 hindcast has been downloaded from the ECOMS-UDP, re-gridded to 0.5o, 

reformatted to NETCDF conform protocol, a land mask applied and re-organised to one 

annotated file (with all variables) for each forecast (i.e. a total of 5400 files = 360 7-month 

forecasts x 15 members). These can be made available to other partners upon request. A 

bias and skill assessment has been performed for selected grid boxes across East Africa 

(see WP31/32 reports). 

 

Figure 20: Observed (FAOSTAT) Millet production for GHA compared to modelled by LPJml 

(forced by WFD). Major driver rain is also plotted 

We show examples of the performance/validation of both WOFOST and LPJml models for 

the whole of the Greater Horn of Africa (GHA) using national statistics from the FAO only 

(Figure 20). Several problems arise with the observed statistics that are currently being 

worked on: calendar issues (different databases use different calendars, causing shifts in the 

series), aggregation issues (reported production at different administrative levels do not 

always add up to total of next higher level; administrative reorganizations; see Figure 21), 

only part of interannual variability is climate related (check for major alternative causes, e.g. 

political upheaval), records at all levels exhibit considerable gaps. Work is underway to 

overcome these issues as far as is possible. We may also have to consider assessing the 

skill of hindcasts not only with respect to observed crop yields, but also with respect to those 

simulated in the reference run forced with WFDEI data. Figure 20 illustrates the strong link 

between both observed and modelled yields and precipitation changes, which supports the 

argument to not need long initialisation models for crop models in East Africa proposed by 

the University of Leeds. 
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Figure 21: Inconsistencies between Maize production in Kenya as reported at 4 different levels. 

By resp FAO, national total, sum of l1 (8 provinces) and sum of l2 (46 districts) subdivision 

 

4.4 Progress in model initialisation for the forestry sector 

The University of Lund have started to test the impact models (forestry sector) and asked 

SMHI to provide relevant S2D model data. They are proposing, and working on a forestry 

case study focused on planning of harvesting activities in the winter season. The reason for 

this is twofold. Firstly, the best prospects for achieving some skill at the seasonal time-scale 

are likely to be in predicting winter NAO conditions, which in turn have a high correlation to 

Scandinavian winter temperature (and precipitation). Secondly, winter-time harvesting poses 

major logistic and environmental challenges in which climate and weather is a major 

component. Thinning and clear cutting are commonly practiced in winter when the soil is 

frozen. However, rainy autumns and mild winters make it difficult to harvest forest standing 

on wet soils, as the heavy machines cause driving damage (soil compaction, deep wheel 

tracks that permanently changes water flow). Seasonal forecasts of enough skill will provide 

a tool to substantially improve the planning of harvesting and associated logistic of forest 

companies. 

Lund University and SMHI have been collaborating in developing the local surface climate 

downscaling tool/model LDCLIM, which integrates existing modeling components into a tool 

for describing local climate conditions and ecological impacts as the combined effect of 

regional atmospheric forcing and local physiographical and biological conditions. For the 

case study, the following variables are required as input: 

 daily 2-metre temperature and precipitation (after bias correction) 

 3-hourly temperature, specific humidity, wind speed (u and v) at the lowest 

(preferably) model level of the seasonal forecasting system, and additionally downward 

radiation shortwave (preferable divided into direct and diffuse component) and longwave, as 

well as rain and snow intensity and surface pressure. 

 

The University of Lund approach has been to work on and apply different model components 

in parallel, both the fully integrated LDCLIM model and the model component (LPJ-Guess) 

for forestry and ecological impacts. 

4.5 Progress in model initialisation for the transport sector 

Predictia will use the numerical model METRo (Model of the Environment and Temperature 

of Roads) to forecast road conditions. This model has an initialisation phase in which, for 
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each forecast, an initial road temperature profile is needed. To produce such a profile 

METRo uses road temperature observations at the surface and subsurface from the last two 

days to force the heat-conduction model. In order to use METRo to perform forecasts on the 

seasonal timescale the seasonal model will take the role of those observations. Moreover, 

according to experimentation comparing forecasts with full/small initialisation periods 

(Crevier & Delage 2001), only small differences in road temperature should appear after a 

24-h forecast. Hence initialisation is not considered to be critical for this application. 
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