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1 Executive Summary 

This report details analysis of forecast quality of seasonal forecasts of climate information 

indices (CIIs). CIIs are often closely related to application-relevant aspects of climatic 

variability such as heating degree days used to estimate the energy demand for heating. 

Forecasts of CIIs are challenging to produce and analyse, not least due to their probabilistic 

nature, the data volume and the often required daily bias correction (Mahlstein et al., 2015). 

As part of this WP, we have developed software tools (R packages) to facilitate download 

(loadeR, Santander Meteorology Group, 2016a), bias correction (downscaleR, Santander 

Meteorology Group, 2016b), index computation (extension to climdex.pcic, in preparation) 

and the validation of seasonal forecasts (easyVerification, MeteoSwiss, 2016).  

Forecast skill varies considerably by CII, in space, by forecasting system, target season and 

lead time (time into the forecast). A newly developed interactive web-platform1 allows users 

to explore this variability in forecast skill to identify opportunities for skilful and thus useful 

seasonal forecasts (Wehrli et al., 2016). Generally, forecasts of CIIs are at most as skilful as 

forecasts of the seasonal mean of the underlying meteorological variables (Bhend et al., 

2016). This reduction in forecast quality, however, is moderate in most cases and thus 

forecasts of CIIs can be issued without major loss in skill. This implies that often the 

enhanced user relevance of forecasts of indices is expected to outweigh the slight reduction 

in forecast skill.  

Seasonal forecasts for Europe are challenging and forecasts of CIIs are marginally skilful. 

This current report presents examples for various sectors such as hydrology, viticulture, and 

energy showing that it is very difficult to derive decision-relevant information from seasonal 

forecasts in Europe due to the lack of skill. Shorter-range forecasts on the other hand may 

add value thanks to their enhanced forecast quality as demonstrated with heat-related 

mortality forecasts (Lowe et al., 2016). 

While the climatic conditions can be difficult to forecast, forecasts of impacts dependent of 

these conditions can have considerable value as demonstrated by forecasts of humanitarian 

needs for Ethiopia. Such added value is partly due to the sensitivity of the impact to large-

scale long-term climatic conditions (drought) that are better predictable and partly due to the 

co-location of forecast skill in areas sensitive to drought. Skill of CII forecasts could also be 

increased through aggregation and/or spatial weighting according to context-relevant 

quantities, as demonstrated with the example of national averages of cooling degree days. 

The latter two examples illustrate that it is worth exploring the value of CII forecasts even if 

there is marginal skill in forecasts of the underlying variables. Implicit aggregation or 

weighting in the calculation of the impact variable can amplify partial skill in the underlying 

variables and thus exploit windows or pockets of predictability while transforming 

meteorological information to more user relevant quantities.  

  

                                                

1
 https://meteoswiss-climate.shinyapps.io/skill_metrics 

 

https://meteoswiss-climate.shinyapps.io/skill_metrics
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2 Project Objectives 

With this deliverable, the project has contributed to the achievement of the following 

objectives (DOW, Section B1.1): 

No. Objective Yes No 

1 

Develop and deliver reliable and trusted impact 
prediction systems for a number of carefully selected 
case studies. These will provide working examples of 
end to end climate-to-impacts-decision making 
services operation on S2D timescales.  X   

2 

Assess and document key knowledge gaps and 
vulnerabilities of important sectors (e.g., water, 
energy, health, transport, agriculture, tourism), along 
with the needs of specific users within these sectors, 
through close collaboration with project stakeholders.     X 

3 
Develop a set of standard tools tailored to the needs 
of stakeholders for calibrating, downscaling, and 
modelling sector-specific impacts on S2D timescales. 

 X   

4 

Develop techniques to map the meteorological 
variables from the prediction systems provided by the 
WMO GPCs (two of which (Met Office and 
MeteoFrance) are partners in the project) into 
variables which are directly relevant to the needs of 
specific stakeholders.   X   

5 

Develop a knowledge-sharing protocol necessary to 
promote the use of these technologies. This will 
include making uncertain information fit into the 
decision support systems used by stakeholders to 
take decisions on the S2D horizon. This objective will 
place Europe at the forefront of the implementation of 
the GFCS, through the GFCS's ambitions to develop 
climate services research, a climate services 
information system and a user interface platform. 

 X 
 

6 

Assess and document the current marketability of 
climate services in Europe and demonstrate how 
climate services on S2D time horizons can be made 
useful to end users.    X 
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3 Detailed Report  

In the following, results for a wide range of sectors in different regions are presented 

separately (Sections 3.1-3.7). The studies make use of a variety of CIIs targeting decision 

processes of the corresponding sector (Table 1). To the extent possible, all examples use 

the same seasonal forecasting system, the same verification metrics and the same validation 

protocol. This helps to intercompare the results and to derive general results.  

Table 1: Climate information indices used in this report 

Climate information index Stakeholder sector Section 

Days with high and low wind speed Energy 3.1 

Extreme precipitation indices Water transport 3.2 

Growing season precipitation, hydrothermal index, 
cool night index 

Agriculture (wine 
production) 

3.3 

Fire weather index Civil protection, forestry 3.4 

Temperature-related mortality Health 3.5 

Water balance Agriculture 3.6 

Water requirement satisfaction index Agriculture 3.7 

Cooling degree days Energy 3.8 

   
We conclude the detailed report with a more general interpretation of the results and an 

illustration of possible ways forward (Section 3.8). In this final section, we highlight the 

potential benefits of aggregation on seasonal forecast skill. Also, we discuss the importance 

of understanding the limits to predictability and being able to identify windows of opportunity 

for useful seasonal forecasts.  

3.1 Wind speed indices for the energy sector (IC3 / BSC) 

Definition of extreme wind indices 

Extreme wind speed indices are useful in order to characterize the low and high wind speeds 

in a particular season. In this deliverable, we present one index each to assess the low wind 

speed (sfcWindq10nd) and the high winds (sfcWindq90nd). These are defined as: 

sfcWindq10nd: percentage of time in a season with wind speed below the climatological 10th 

percentile ( ). 

 

sfcWindq90nd: percentage of time in a season with wind speed above the climatological 90th 

percentile ( ). 
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The climatological 90th and 10th percentiles have been used to calculate the number of days 

in which some of the 4 values per day of the wind speed exceeds the 90th percentile 

threshold (or is below the 10th percentile threshold). Then, the frequency of days above and 

below the corresponding climatological percentile in a month is computed. 

The methodology for the estimation of these indices was first proposed by Pepler et al. 

(2015) and further developed in Prodhomme et al. (2015). It has been applied for the 10m 

wind speed ERA-Interim reanalysis data (Dee et al. 2011) and for the ECMWF System 4 

seasonal predictions (Molteni et al. 2011) at 6-hourly resolution over the period 1981-2012. 

The application of the methodology has been applied separately for each dataset because 

the percentiles in the reference reanalysis and in the predictions can be very different. 

Forecast quality assessment of the wind indices and comparison with the 

seasonal average of wind speed 

In the Deliverable 22.2 the systematic errors of the predicted indices were evaluated. The 

bias is slightly different for the two indices considered, with a larger bias found for the 

sfcWindq10nd index relative to the sfcWindq90nd. However the biases for the two indices 

were very low, so this suggested that bias correction is not critical for these extreme indices 

since they are based on relative thresholds which are computed separately for the 

predictions and the reference, taking into account implicitly bias correction. 

A further evaluation of different aspects of the forecast quality of the two indices was 

provided in the deliverable 22.2. Here we have compared the forecast quality of 

sfcWindq10nd and sfcWindq90nd relative to the forecast quality of the average wind speed 

in a season (sfcWind). To better illustrate the potential benefits of these indices for the wind 

energy sector we have used a deterministic measure (Correlation) and a probabilistic skill 

score (CRPSS).  

Correlation measures the linear correspondence between the observational reference and 

the predicted ensemble mean, which is very useful in order to identify regions where there is 

potential skill, which is the maximum skill that can be found for an index in a particular 

region. Correlation maps have been computed for the average wind speed (Figure 1a) and 

wind speed extreme indices: sfcWindq10nd (Figure 1b) and sfcWindq90nd (Figure 1c). 
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Figure 1: Correlation of forecasted ensemble mean of: (a) Average wind speed in a season 
(b) Number of days under the climatological 10th percentile; (c) Number of days over the 
climatological 90th percentile, in winter (DJF) from ECMWF System 4 and Era Interim. 
Forecasts with System 4 have been initialized on the 1st of November over the period 1981-
2012. The hatched areas indicate where the skill is significant at the 95% confidence level 
(i.e. System 4 is significantly more skilful than a climatological forecast). 

The three indices considered exhibit similar positive and significant correlation at a 95% level 

in some oceanic and tropical regions as Northern South-America, North-eastern Brazil, 

Western Africa and South-eastern Asia. Although the predictability of the seasonal prediction 

systems is limited at extra tropical latitudes, some regions such as Canada or Central US 

also display correlation values significantly larger than zero for the sfcWindq10nd and 

sfcWindq90nd indices. 

The average wind speed (Figure 1a) shows significant and higher correlations in North 

America, Northern Europe and also in East Asia than sfcWindq10nd and sfcWindq90nd. This 

result illustrates the added value of the average wind speed relative to the extreme indices. 

However there are some regions where the extremes are more predictable than the average 

wind speed as in South America, Central Africa, Southern Europe or Australia where the 

best correlations are obtained for the sfcWindq10nd and also in Western North America or 

South Africa where sfcWindq90nd displays the higher correlations. 
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If we compare the correlations of the two extreme indices there is a better correlation for the 

sfcWindq90nd, however some regions as Tropical Pacific, Central Africa, Southern Europe 

or Australia display more predictability for the sfcWindq10 index. The differences between 

these two indices are an evidence of the asymmetry in the predictability of the climatological 

wind speed distribution relative to the six hourly wind speed values. The 10th and 90th 

climatological percentiles which have been used for the creation of sfcWindq10nd and 

sfcWindq90nd do not match the probability density function of ERA-Interim and this 

translates into differences in the associated percentile values. 

Skilful forecasts of sfcWindq10nd and sfcWindq90nd can help users to save costs related 

with the vulnerabilities and risks associated with the wind extremes. Therefore, the potential 

skill of sfcWindq10nd and sfcWindq90nd found in some key regions for the wind industry, 

with a number of wind farms located there, such as North America, the North Sea or the 

Northeast of Brazil, could be useful to be considered in the decision making processes 

related with the wind energy operations. 

The continuous ranked probability skill score (CRPSS) is a skill score based on the CRPS 

which is defined as the integrated squared difference between the cumulative forecast and 

observation distributions. It can be interpreted as a probabilistic generalisation of the mean 

absolute error which allows the evaluation of the full probability distribution. 
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Figure 2: Fair continuous ranked probability skill score (CRPSS) of: (a) Average wind speed 
in a season (b) Number of days under the climatological 10th percentile; (c) Number of days 
over the climatological 90th percentile, in winter (DJF) from ECMWF System 4 and Era 
Interim. Forecasts with System 4 have been initialized on the 1st of November for the period 
1981-2012. The hatched areas indicate where the skill is significant at the 95% confidence 
level (i.e. System 4 is significantly more skilful than a climatological forecast). 

Figure 2 illustrates the agreement between the three indices with skilful regions in the tropics 

where the highest CRPSS skill score (up to 0.5) can be found. Northern South America and 

the Northeast of Brazil have particularly significant positive values of CRPSS. Some of 

Central US retains a positive and significant skill at the 95% confidence level for the average 

wind speed (Figure 2a) and the sfcWindq90nd (Figure 2c) wind speed. But nearly all other 

continental regions, including Europe, have not statistically significant skill scores for the 

three considered indices. 

The differences found between correlation and CRPSS (Figure 1 and Figure 2) indicate that 

although the potential skill to predict the wind extremes indices is high in many regions 

around the world (Figure 1), the full distribution of these forecasts evaluated with CRPSS 

(Figure 2) does not provide extra value relative to the climatology.  
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Relevance of wind indices for wind energy applications 

After developing two extreme indices (sfcWindq10nd and sfcWindq90nd), we have contacted 

users of the EUPORIAS energy prototype to identify the potential benefits of these indices 

for their daily activities. 

The two extreme indices (defined above) consist in the percentage of time in a season with 

wind speeds over 90th percentile (sfcWindq90nd) and wind speeds under the 10th percentile 

(sfcWindq10nd). The wind energy users’ feedback indicated that the definition of these 

indices was clear and easy to understand. Most of them were used to deal with forecasts 

and have enough knowledge to understand percentiles, particularly those users whose 

activity is focused on the evaluation of risk, e.g. energy traders. However they mentioned 

that the use of the “extreme” term can be misleading. Wind energy industry currently 

considers the extreme events such as small-scale processes which can affect the design of 

the turbines, for example storms. To take into account these events in their decision making 

processes they traditionally use weather forecasts, thus when presented extreme indices for 

seasonal time scales it is difficult to interpret them in the right temporal scale as they are 

biased by their experience. In order to clarify the difference between the seasonal prediction 

of the sfcWindq10nd and sfcWindq90nd and the extreme definition in the wind energy world, 

users have proposed more user-friendly names to be used as alternative to “extreme” such 

as: “outlier”, “number of exceedances” or “number of exceeding threshold ”. 

The selected season for the illustration of the forecast quality of the wind speed indices 

defined in the WP22 was the boreal winter, DJF. Some users indicate that decisions in the 

wind energy sector are not taken for the seasons commonly used by climate scientists (DJF, 

MAM, JJA, and SON). They rather make their scheduling in terms of year quarters (Q4: OND 

or Q1: JFM), which are linked to financial calendars. These quarters or even individual 

months provide information directly tradeable in the energy market. 

The users were also questioned about the added value of these indices compared to the 

seasonal predictions of wind speed that were included in the visualisation tool of the 

RESILIENCE prototype (http://project-ukko.net). The users mentioned that the prediction of 

these indices could be complementary to the seasonal predictions of the average wind 

speed. The information contained in project Ukko may influence their view on market prices 

and may lead them to take a market position on it. On the other side, information concerning 

the number of exceedances (10th/90th percentile) on a specific period may help them to buy 

an option product to hedge another position. In addition some of the users also considered 

the information of the indices interesting because they gave information of the number of 

days in a season with wind speed under/over the 10th/90th percentile, which is perceived as a 

higher time resolution than the average wind speed in a season. 

Regarding the way in which they would like to get the information of these indices, they said 

that the visual format was very interesting for them but that they needed not only the 

visualisation but also the data. Therefore, a tabular format should be provided besides maps 

in order to allow the users to integrate this information in their decision making processes. 

Wind energy users have also identified some potential applications of these indices related 

with the financial operations such as energy trading. By contrast, some of the users 

http://project-ukko.net/
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mentioned that these indices cannot be integrated in decision making processes related with 

the planning of maintenance works. The maintenance decisions are made two or three days 

in advance and these decisions involve many parameters besides weather and climate 

conditions, therefore this layer of information was not considered critical for them. 

Nevertheless the users also mentioned that the planning of maintenance strategies is very 

variable between different companies. For instance, the planning of maintenance works in 

offshore wind farms can potentially require information with more time in advance, and those 

companies could be more interested in the sfcWindq10nd and sfcWindq90nd indices. 

Key Points 

- Globally, there are some regions in which wind extreme indices display more 

potential skill than the average wind speed, but there are small differences 

between the two indices and the underlying variable. 

- Wind energy users stated that seasonal prediction of wind speeds and the 

sfcWindq10nd and sfcWindq90nd can be complementary sources of information 

to be integrated in their decision-making processes related with the financial 

risk. 

3.2 Precipitation indices for the water transport sector (KNMI)  

Focusing on water related indices, we investigated the skill of extreme precipitation indices 

for the Rhine basin concerning water transport related factors. In D22.2 we concluded that 

no robust patterns could be found in the seasonal forecast of extreme precipitation indices 

such as R20mm (very heavy precipitation days), illustrating the difficulty when working with 

indices related to rare events. This analysis was part of the ‘SOSRhine’ case study where, 

together with the user (BFG) we could not identify potential precipitation indices/drivers of 

low/high flows with useful forecast skill. The predictive skill of the extreme indices was 

assessed after applying the necessary bias correction (available in D22.2 and D21.1). This 

analysis is put on hold until new hydrological simulations are available from BFG and further 

relevant discharge indices will be investigated. 

In addition to the case study, we worked on providing the tools to generate and evaluate the 

ETCCDI and ECA&D indices for station and gridded data. The work on the calculation 

routines was done in collaboration with MeteoSwiss, where we adapted the climdex.pcic and 

climdex.pcic.ncdf R libraries to accommodate ECA&D, and MeteoSwiss snow related 

indices. These routines were also used in the CLIPC project as validation for the 

development of the icclim python library. A webpage on the indices calculated using E-OBS, 

providing thus the historical perspective and variability of the indices, is available on the 

ECA&D website. Following features for the webpage such as trends will be available after 

the homogenisation of the input data from the EUSTACE project. As the E-OBS data set is 

used in the bias correction of seasonal forecast, we had requests from users from South 

European – North African countries to provide tercile maps of the observed CII. This is 

related mainly to users were gridded observations are not available due to issues of data 

http://sosrhine.euporias.eu/en
http://www.ecad.eu/utils/mapserver/eobs_maps_indices.php
http://www.ecad.eu/utils/mapserver/eobs_maps_indices.php
http://www.ecad.eu/utils/mapserver/eobs_maps_indices.php
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sharing and potential users could benefit from such maps in the bias correction process (this 

is work in progress).  

Key points 

- Forecast skill of indices related to extreme rainfall is not sufficient to be useful 

for forecasting river flows in the Rhine catchment. 

- Software tools have been developed to compute an extended set of climate 

indices from observational and forecast data. 

3.3 Viticulture indices for the wine production sector (UL - IDL / IPMA) 

In the previous deliverable (D22.2) a specialized set of CII relevant for the wine producing 

stakeholders were calculated. Although the bias correction with quantile mapping and spread 

correction reduced the biases considerably, still some significant biases associated to 

precipitation remained. Even though the spread to error ratio, in most cases, has been 

brought to values near 1, the forecast skill is very limited and the skill of forecast probabilities 

is worse than the use of climatological frequencies as forecast. A new method of bias 

correction was applied to the 15 members of System 4 seasonal forecast (S4 from here 

onwards) (Molteni et al., 2011) for the period (1981-2010) and for the European domain at 

0.7º resolution. ERA Interim reanalysis was used as reference. From the seven indices in 

D22.2, three, which have a direct link to viticulture practices, were recomputed. As before, 

the seasonal forecast initialized in March (Lead Time 1) were used to derive the CII 

forecasts. 

Table 2: Climate indices for wine production, definition and usefulness 
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Bias Correction 

Bias correction was attempted through the Cumulative Distribution Function-transform (CDF-

t) method developed by Michelangeli et al. (2009) of the ensemble daily precipitation, 

maximum and minimum temperature. This approach relates the empirical cumulative 

distribution function (CDF) of a variable from SF to the CDF of this variable from ERA 

Interim. For each day, a 31 day moving window (i.e. days centred on the day of interest) is 

used as in Wilcke et al. (2013). A two-fold cross validation with 15 year periods is applied, 

thus each CDF is determined from 6975 values (15years x 31 day window x 15 members) , 

taking into account autocorrelation and the interannual variability of each day. In the case of 

precipitation, the 15 year ensemble dry day frequency is corrected to be equal to the 15 year 

ERA Interim climatology dry day frequency. 

Forecast Quality 

Growing season precipitation (GSP) 

The Growing Season Precipitation, as the accumulated precipitation from April to 

September, i.e. the growing season, can be used as a discriminating index for vineyard 

distribution. Areas with GSP above 600mm are usually considered excessively humid, 

whereas areas with GSP bellow 200mm are extremely dry. The new method is able to 

reduce the bias in relation to the equidistant CDF of D22.2 (Figure 3a). The forecast presents 

once again a dry bias, illustrating the difficulty in bias correction of the precipitation. As 

before, the anomaly correlation and the ROC (Figure 3b, c and d), have similar patterns to 

the previous method. No improvement is detected.  
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Figure 3: Growing season precipitation (a) Bias, (b) Anomaly Correlation, (c) ROCs area for 
the lower tercile, (d) ROCs area for the upper tercile, (e) Spread to Error ratio, (f) Continuous 
Ranked Probability Skill Score 

The spread to error ratio (Figure 3e) displays values near 1 for most of the continent 

indicating that the corrected ensemble is able to represent the forecast uncertainty in several 

areas. The high elevation areas, like the Alps and Carpathians, the spread to error ratio is 

lowest indicating considerable under-dispersion/over-confidence of the ensemble, thus the 



 

 

EUPORIAS (308291) Deliverable 22.3 Page 19 

 

ensemble is too narrow and does not represent forecast uncertainty. The continuous ranked 

probability skill score is improved, but remains negative (Figure 3f) implying that the skill of 

the forecast probabilities is worse than the use of climatological frequencies as forecast and 

that the lack of skill is not due to the residual biases. 

Hydrothermal Index 

 

Figure 4: Hydrothermal Index (a) Bias, (b) Anomaly Correlation, (c) ROCs area for the lower 
tercile, (d) ROCs area for the upper tercile, (e) Spread to Error ratio, (f) Continuous Ranked 
Probability Skill Score. 

According to Branas et al. (1946) the Hydrothermal Index can be used to determine the risk 

of the development of mildew. According to the climatology, all of central Europe has a high 
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risk of mildew occurrence and only southern Greece, Sicily, Sardinia and southern Iberian 

Peninsula are low risk. As before, the spatial distribution of the remaining bias (Figure 4a) is 

analogous to the previous method, however, these biases are reduced. The anomaly 

correlation and the ROCs maps (Figure 4b, c and d) are very similar to the GSP anomaly 

correlations and ROCs, indicating that the precipitation distribution dominates the index skill. 

The spread to error ratio (Figure 4e) is higher with this method, but still a small under-

dispersion/over-confidence of the ensemble remains, thus the ensemble is still too narrow. 

The continuous ranked probability skill score (Figure 4f) is negative and akin to GSP.  

Cool Night Index 

 

Figure 5: Cool Night Index (a) Bias, (b) Anomaly Correlation, (c) ROCs area for the lower 
tercile, (d) ROCs area for the upper tercile, (e) Spread to Error ratio, (f) Continuous Ranked 
Probability Skill Score. 
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The results from the CDF-t are equivalent to the equidistant quantile mapping, stressing the 

point the progresses in the previous indices are related to the improvement of the 

representation of precipitation. 

Key points 

- The CDF-t methodology improves the representation of the precipitation 

- Forecast skill of indices relevant to viticulture is still very limited. Often forecasts 

based on the forecasting system perform worse than the climatological 

reference forecast. 

3.4 Forest fire risk for the civil protection and forestry sectors (UC / 

MetOffice) 

Introduction 

While the main atmospheric surface variables affecting fire danger in a certain area are air 

temperature, humidity and wind speed (referred to as fire-weather variables), these are 

usually combined and integrated in fire-weather indices. These are multi-variable climate 

impact indicators (CIIs) tailored to the needs of fire prevention agencies, envisaged to 

provide a more realistic representation of the climatic conditions conducive to fires (see e.g. 

Viegas et al 1999 for a description of some indices applied in the Euro-Mediterranean, EU-

MED, region). Beyond the daily scale on which fire-weather indices are calculated, they can 

be aggregated on seasonal time scales to provide a characterization of a particular season. 

The generation of probabilistic seasonal predictions of such indices, computed from the 

GCM outputs, could be highly valuable for decision-makers, helping risk managers to 

conduct a rapid assessment of management options in advance of the fire season. The CII 

considered in EUPORIAS WP22 in the forestry and civil protection sectors is the Canadian 

Fire Weather Index (FWI), one of the most widely applied fire-weather indices throughout the 

world. Originally conceived for the boreal forests of Canada, the FWI system has proven a 

useful fire-weather indicator in many areas of the world (see e.g. Bedia et al 2015) and in 

particular in EU-MED (Viegas et al 1999, Bedia et al 2014a). As a result, FWI is nowadays 

the official index for the operational medium-range fire danger forecasts issued by the 

European Forest Fire Information System (EFFIS2, San Miguel-Ayanz et al 2013) being 

therefore natural to explore its applicability to the seasonal range in the same context. 

In the previous deliverable (D22.2), we addressed several methodological aspects regarding 

the computation of FWI from seasonal forecast model outputs. Notably, we gave 

recommendations on how to proceed with bias correction of FWI predictions using empirical 

Quantile Mapping (QM hereafter), and showed the need for detrending prior to forecast 

verification in order to avoid spurious results. We also performed a verification of the FWI 

forecasts (using the System 4 seasonal hindcast) and found that there is significant skill in 

                                                

2
 http://forest.jrc.ec.europa.eu/effis/ 
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predicting above average summer FWI in parts of SE Europe at 1 month lead time, leaving 

the door open to the operational applicability of FWI forecasts in this fire-prone area of the 

Euro-Mediterranean region. 

In this deliverable, we investigate the potential sources of predictability of FWI. To this aim, 

we perform the verification of the input FWI variables separately, in order to ascertain what 

variables are more related to the skilful FWI predictions. Following work by previous authors, 

we then hypothesize that the summer North Atlantic Oscillation (SNAO) may have an 

influence on the forecast skill in Eastern Europe, and perform a verification of the SNAO for 

the System 4 model. 

Summer climate in the North Atlantic-European sector possesses a principal pattern of year-

to-year variability that is the parallel to the well-known North Atlantic Oscillation (NAO, Hurrell 

et al 2003) in winter. This summer North Atlantic Oscillation (SNAO) is defined here as the 

first empirical orthogonal function (EOF) of observed summertime extratropical North Atlantic 

pressure at mean sea level (Folland et al 2009). It is shown to be characterized by a more 

northerly location and smaller spatial scale than its winter counterpart. Although of lesser 

amplitude than its wintertime counterpart, the SNAO exerts a strong influence on northern 

European rainfall, temperature, and cloudiness through changes in the position of the North 

Atlantic storm track (Folland et al 2009). Furthermore, and of potential relevance for fire 

danger conditions in the study area, SNAO significantly affects summer precipitation in the 

Mediterranean, particularly Italy, Greece and the Balkans (correlations of up to 0.6), as 

shown in Bladé et al (2012). These areas are partially coincident with the area were skilful 

FWI predictions were found in D22.1 and D22.2. However, Bladé et al (2012) examined 

whether the surface influence of the SNAO is captured by two CMIP3 GCMs (HadCM3 and 

GFDL-CM2.1) and found weak or non-existent correlations between the SNAO and 

Mediterranean precipitation. In this deliverable, we investigate whether SNAO can be skilfully 

reproduced by System 4, in order to gain a better understanding of the underlying processes 

related to the skilful FWI predictions. In addition, and provided the recent availability of the 

GloSea5 hindcast for the ECOMS partners through the ECOMS-UDG, we also verified the 

SNAO predictions of this model, provided its reported improved performance with respect to 

previous GCMs in capturing the NAO (Scaife et al 2014). 

Our results using System 4 indicate that the skill in seasonal FWI predictions is largely 

coupled to its skill in the prediction of near-surface air humidity. However, neither System 4, 

nor GloSea5 are able to skilfully reproduce the interannual variability of SNAO, and therefore 

the predictability of FWI cannot be attributed to the representation of this phenomenon by the 

model. Interestingly, GloSea5 was able to predict the positive phase of SNAO of year 2002 

with outstanding accuracy, suggesting that this year may constitute a potentially fruitful case-

study for further investigation of key sources of predictability still untapped (Scaife et al 

2014). 

Methodology 

Data and methods 

Data were obtained from the ECOMS-UDG. For the sake of brevity, the interested reader is 

referred to previous deliverables D22.1 and D22.2, where the steps and methods used for 
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data post-processing, quantile mapping, and verification, as well as the different open-source 

tools used to this aim are described. A worked, fully reproducible example of data loading, 

FWI calculation, bias correction and verification (considering the publicly available NCEP-

CFSv2 reforecast) is also available3. 

SNAO calculation 

We follow the SNAO definition by Bladé et al. (2011), as the first EOF obtained from the 

seasonal mean sea-level pressure (MSLP) or the months July-August in the domain defined 

by the corners 40° N-70° N; 90° W-30° E) calculated for the period 1950–2010. The same 

methodology has been used in other studies (e.g. Favà et al 2015). Here, we calculated the 

SNAO using a principal components analysis (PCA) from a covariance matrix of the MSLP 

daily anomalies in July and August, from the NCEP-NCAR reanalysis. The loading pattern of 

SNAO was defined as the leading EOF mode. The SNAO was calculated by projecting the 

leading EOF onto the MSLP daily anomalies. To this aim, we used the ‘prinComp’ and 

‘grid2PCs’ functions available in the R package downscaleR v1.3-3 (Santander Meteorology 

Group, 2016b). 

Results 

FWI forecast verification 

This section is a recap of previous deliverables, in order to have a complete picture of the 

new findings of D22.3 in a self-contained way. As already indicated in D22.2, we found skilful 

predictions of the upper FWI tercile in the eastern part of the study area (Greece, Bulgaria 

and Turkey mainly), as well as other scattered significant ROCSS areas in France and 

Central Spain (Figure 6). We also found that the QM correction of FWI predictions does not 

alter this pattern with regard to the raw (uncorrected) predictions. This enables the 

identification of a “region of interest” in the SE and NE parts of the study area where there is 

a potential for the applicability of seasonal FWI forecasts at lead month 1 (i.e., one month 

before the fire season, JJAS, starts). 

 

Figure 6: ROC Skill Score of the System4 (upper tercile) FWI predictions considering the 
uncorrected (RAW, left) and the QM-corrected predictions (QM, right). The grid boxes with 
significant ROCSS values are indicated by the circles (95% confidence interval). 

Forecast verification of the Input FWI variables 

Relative humidity, temperature and - to a lesser extent - also precipitation are skilfully 

predicted over the subregion of interest. However, the extent of significant ROCSS for 

temperature extends further to the north, beyond the skilful area for FWI (Figure 7). On the 

                                                

3
 https://github.com/SantanderMetGroup/fireDanger/wiki/CS_Bedia-et-al-2016-(submitted) 
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other hand, the skill of precipitation is restricted to a smaller domain between Greece, 

Bulgaria and Turkey, and also other regions such as France where FWI has no skill. Thus, 

most of the skill related to FWI predictions can be attributed to the skill in near-surface 

humidity predictions. 

 

Figure 7: ROC Skill Score of the raw (uncorrected) and the QM-corrected S4 predictions 
(left/right columns respectively) of the input FWI variables (tas: surface air temperature, hurs: 
relative humidity, wss: wind speed and tp: total precipitation). T1 refers to the first (upper) 
and T3 to the third (lower) terciles of the variable. These terciles correspond to high FWI 
values (i.e. low relative humidity, high wind speed, high temperatures and low precipitation). 
The grid boxes with significant ROCSS values are indicated by the circles (95% c.i.). 

Given the reported relationships between the SNAO and precipitation in the region of interest 

(Bladé et al 2012), we next try to ascertain whether FWI predictability could be partially 

linked to the predictability of SNAO. 

SNAO Forecast verification 

The July-August MSLP field of NCEP/NCAR Reanalysis 1 (1950-2010) and the leading EOF 

are represented in Figure 8. With this information, we reconstructed the normalized SNAO 

index for the whole reanalysis period. As an additional double-check step, we compared the 

NCEP/NCAR Reanalysis 1 SNAO index with the same index calculated from the Trenberth 

MSLP historical records (Trenberth and Paolino 1980), which yielded very similar results 

(Figure 9, Pearson’s r=0.99). 
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Figure 8: (a) Average mean sea-level pressure of July-August (1950-2010) as represented 
by the NCEP-NCAR reanalysis. (b) Corresponding leading EOF. 

Using a simple correlation analysis between observed and predicted (ensemble mean) 

SNAO series, we conclude that there is no skill in SNAO as forecasted by System 4. This 

finding is in agreement with the analysis of other GCMs, as indicated in the introduction of 

this section (Bladé et al 2012). In the case of GloSea5 there is a slight improvement in this 

correlation (still far from being significant). Nevertheless, the accuracy of the GloSea5 

prediction of the positive SNAO phase of the year 2002 is noteworthy, suggesting that this 

year may constitute a potentially fruitful case-study for further investigation of key sources of 

predictability still untapped (Scaife et al 2014). 
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Figure 9: SNAO time series corresponding to observations (NCEP/NCAR Reanalysis 1, in 
red and Trenberth MSLP dataset, dashed black) and the lead month 1 predictions 
corresponding to GloSea5 (top) and System 4 (bottom) models. The green shading 
indicates, from light to darker, the envelopes formed by min-max, 10th-90th percentiles and 
interquartile range respectively. The green line corresponds to the ensemble mean (24 
members in the case of GloSea5, 15 members in the case of System 4). Both forecasts are 
based on the lead month 2 predictions (initialized in May) of July-August MSLP. 

Conclusions and future work 

The main findings of this analysis are next briefly summarized. 

 Our results using System 4 indicate that the skill in seasonal FWI predictions is 

largely coupled to its skill in the prediction of near-surface air humidity. 

 Skill in predicting FWI cannot be linked to the predictability of SNAO, a known driver 

of summer precipitation in the Mediterranean. Neither System 4, nor GloSea5 are 

able to skilfully reproduce the interannual variability of SNAO.  

 Interestingly, GloSea5 was able to predict the positive phase of SNAO of year 2002 

with outstanding accuracy, suggesting that this year may constitute a potentially 

fruitful case-study for further investigation of key sources of predictability. 
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Further work currently in progress now focuses on the forecast verification of other FWI 

components (see van Wagner 1987), in order to better identify which components are 

contributing most to FWI skill. We hypothesize that FWI components more closely related 

with fuels and soil moisture in the upper layers (e.g. fine fuel moisture code or duff moisture 

code) are the main variables determining sill in FWI forecasts in the region of interest, while 

other components more dependent on wind such as the initial spread index may counteract 

by limiting the skill. Furthermore, these components are empirically known to be also closely 

related to fire activity as much as FWI itself (for instance in terms of total burned area or 

number of fires, see e.g. Amatulli et al 2013, Bedia et al 2014).   

3.5 Temperature-related mortality for the health sector (IC3 / WHO) 

Heat waves have been responsible for more fatalities in Europe over the past decades than 

any other extreme weather event. However, temperature-related illnesses and deaths are 

largely preventable. Reliable sub-seasonal-to-seasonal (S2S) climate forecasts of extreme 

temperatures could allow for better short-to-medium-term resource management within heat-

health action plans, to protect vulnerable populations and ensure access to preventive 

measures well in advance. 

In a previous study (Lowe et al., 2015), the performance of a climate-driven mortality model 

to provide probabilistic predictions of exceeding emergency mortality thresholds for a heat 

wave and a cold spell scenario in 54 European regions was evaluated. The mortality model 

was formulated using observed (reanalysis) apparent temperature data (Ballester et al., 

2011). This observed temperature data was then used to produce spatio-temporal 

probabilistic mortality estimates for a heat wave and cold spell scenario. The model showed 

considerable skill, particularly for the heat wave scenario (1–15 August 2003), successfully 

anticipating the occurrence or non-occurrence of mortality rates exceeding the emergency 

threshold (75th percentile of the mortality distribution) for 89% of the 54 regions, given a 

probability decision threshold of 70% (see D22.2). The use of observed apparent 

temperature in the mortality model represented an upper bound to forecast skill, given a 

perfect climate forecast. 

In a subsequent study (Lowe et al., 2016), the extent to which S2S climate forecasts could 

be incorporated into heat-health action plans, to support timely public health decision-making 

ahead of imminent heat wave events in Europe, was assessed. The observed apparent 

temperature data used to formulate the mortality model was replaced with sub-seasonal 

(Figure 10) and seasonal (Figure 11) forecast apparent temperature, at different lead times 

(e.g., 1 day, 4 days, 8 days, up to 3 months) to produce probabilistic mortality forecasts 

ahead of the 2003 heat wave event in Europe. Results were compared to mortality 

predictions, inferred using observed apparent temperature data in the mortality model. 
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Figure 10: Binary map of observed mortality exceeding the “emergency” alert threshold (75th 
percentile of daily mortality distribution in the warm tail) during the heat wave scenario (1–15 
August 2003), followed by probabilistic maps of exceeding the threshold using a mortality 
model formulated with sub-seasonal forecasts of apparent temperature at lead times (LT) of 
1 day, 4 days, 8 days, 11 days and 15 days. The graduated colour bar represents the 
probability of exceeding the mortality threshold (ranging from 0%, pale colours, to 100%, 
deep colours). Most of the skill disappears in the forecasts initiated more than 4 days ahead 
the heat wave. 

 

Figure 11: Binary map of observed mortality exceeding the “emergency” alert threshold (75th 
percentile of daily mortality distribution in the warm tail) during the heat wave scenario (1–15 
August 2003), followed by probabilistic maps of exceeding the threshold using a mortality 
model formulated with seasonal climate forecasts with 1 month and 3 months lead time (LT). 
The results show no skill in the majority of regions. 
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Figure 12: ROC curves for the binary event of exceeding the emergency mortality threshold 
of the 75th percentile in each of the 54 regions for the heat wave scenario (1–15 August 
2003), using the probabilistic mortality model driven by forecast apparent temperature data 
at lead times ranging from 1 day, 4 days, 8 days, 11 days, 15 days, 18 days, 1 month and 3 
months. The ROC curve for the mortality model driven by observed apparent temperature 
data is shown for reference (black curve). 

In general, we found a decreasing transition in skill between excellent predictions when using 

observed temperature, to predictions with no skill when using forecast temperature with lead 

times greater than one week (Figure 12). However, even at lead-times up to three months, 

there were some regions in Spain and the United Kingdom where excess mortality was 

detected with some certainty (Figure 11). This suggests that in some areas of Europe, there 

is potential for S2S climate forecasts to be incorporated in localised heat–health action plans. 

In general, these results show that the performance of this climate service framework is not 

limited by the mortality model itself, but rather by the predictability of the climate variables, at 

S2S time scales, over Europe. 

In summary, in certain areas of Europe, there is potential for longer lead-times to be 

incorporated into pre-existing heat-health action plans in the European Region, whilst 

countries yet to develop heat-health action plans could incorporate such information at the 

design stage. In those same attempts, countries should take into account the regional 
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differences in both vulnerability and acclimatization. However, our results indicate that a 

compromise will have to be reached between user needs and the capabilities of seasonal 

climate forecasts over Europe, to provide skilful mortality predictions in advance of imminent 

extreme temperature events. 

Towards a proper design of a future S2S climate forecasting system for temperature-related 

mortality (TRM), recognition of the variability in vulnerability and differences in adaptation 

capacities shown in societies across Europe should be recognized. In this respect, 

vulnerability to cold days, seasons and long-term winter conditions was studied in an article 

recently published in Nature Climate Change (Ballester et al. 2016). The link between 

atmospheric temperature and human mortality has been extensively characterized in the 

literature (Kunst et al. 1993; Ballester et al., 2011). Once the capacity of the human body to 

mitigate the external sources of heat stress is exceeded, risk of homeostatic failure 

(Kettaneh et al. 2010), disease exacerbation and death rapidly start to increase (McMichael 

et al. 2012). The risk of death in a society is also influenced by a number of socioeconomic 

factors, such as the macroeconomic situation of the country, the level of income poverty and 

inequality, the amount of government expenditure on education and health or simply the kind 

of lifestyle and habits of human individuals (Healy 2003). Housing energy efficiency and fuel 

poverty are additional factors associated with increased excess winter deaths and 

cardiovascular, respiratory and mental diseases (Marmot Review Team 2011). 

 

Figure 13: Year-to-year correlation between winter mean temperature and mortality (left), 
and regression coefficient between daily temperature and mortality in winter (in daily cases 
per million per ºC, right). 

Our analyses resulted from the evaluation of the relationship between winter climate, 

influenza and numbers of deaths in a very large ensemble of NUTS2 regions representing 

more than 400 million people in western Europe (same as in Ballester et al. 2011). On the 

one hand, our study comprehensively characterized the continental picture of human 

sensitivity to winter conditions at different timescales, showing that the vast majority of the 

European regions still remain exposed to year-to-year fluctuations in winter temperatures, 
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with higher seasonal mortality and influenza incidence during harsh winters (see in Figure 

13a the correlation map between the annual time series of winter mean temperature and 

mortality for each of the European regions). 

On the other hand, Figure 13b illustrates the so-called paradox of winter mortality, in which 

the highest vulnerability to cold days is found in the temperate regions of southern 

Europe: -1.13, -0.67 and -0.52 daily cases/million in Portugal, Spain and Italy, respectively. 

This apparent paradox is explained by multiple factors (Healy 2003), such as the better 

housing insulation in the areas with severe climatological winter conditions in central and 

eastern Europe. Thus, the lowest regression coefficients of daily data are found in the 

Netherlands, Switzerland and Germany (-0.14, -0.15 and -0.16 daily cases/million 

respectively). The contrast between the larger vulnerability in the southern regions and the 

higher degree of acclimatization in the northeastern countries is better expressed through the 

largely negative correlation between climatological winter mean temperatures and the 

regression coefficients of daily data at the regional level (-0.74, see Figure S7 in Ballester et 

al. 2016). 

The United Kingdom exemplifies the different spatial distribution of human vulnerability at 

different timescales: it is the fourth country with higher day-to-day regression coefficient 

(-0.38 daily cases/million/°C, Figure 13b), but in contrast it is the third country with lower 

year-to-year correlation (-0.12, Figure 13a). The opposite situation is found in many countries 

in central Europe (e.g. Germany, with a year-to-year correlation of -0.85 and a day-to-day 

regression of -0.16 daily cases/million/°C). These results illustrate the importance of the still 

not well understood effect of human adaptation to environmental temperatures, which is key 

to have a complete description of the effectiveness of climate services and early warning 

systems at different timescales. 

Key Points 

- Heat-related mortality seems to be predictable a week in advance, with some 

areas of Europe showing potential for predictability over longer lead-times 

- Regional differences in both vulnerability and acclimatization have to be taken 

into account when using climate predictions in heat-health action plans. 
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3.6 Water balance forecasts for East Africa (MeteoSwiss) 

In addition to the analyses of CII forecasts based on single meteorological variables, we also 

analysed multi-variable CII forecasts. Some hope for increased skill in such multivariate 

indices seems justified given the physical basis of dynamical seasonal forecast systems 

ensuring physical consistency in the output of different meteorological variables. 

In the context of food security in Eastern Africa and the LEAP prototype (also see discussion 

in the previous section), we investigated the provision of seasonal forecasts of the 

cumulative water balance at the horn of Africa based on ECMWF System 4 predictions. 

Drought indices based on the meteorological water balance (defined as precipitation minus 

potential evapotranspiration) have proven to be suitable indicators for describing drought 

phenomena and impacts on various timescales (Vicente-Serrano et al., 2010, Buegería et 

al., 2014). The most relevant time period for food security in Ethiopia comprises the months 

June through September, as this covers the relevant growth season of the major food crops 

in the area. We therefore chose the water balance over this time span as a CII, to be 

predicted based on the seasonal forecast issued in May.  

The water balance could be computed based on a monthly basis, in principle, but we used 

cumulative water balances based on daily values of precipitation and potential 

evapotranspiration here, as we would like to capture any potential in sub-monthly variability 

of the forecasts, and relying on daily output also adds flexibility of choosing different 

aggregation periods later on, if required by users. 

Daily potential evapotranspiration values were computed using the Hargreaves equation 

  

where Ra is the extraterrestrial solar radiation (Wm-2) approximated depending on latitude 

and day of year as described in Allen et al. (1996). 

Bias correction of daily temperature and precipitation output was performed against the 

WATCH Forcing Dataset-ERA Interim (WFDEI, Weedon et al., 2011 and 2014), which also 

served as the reference data set for the skill analyses. Daily minimum and maximum 

temperatures were bias-corrected using a lead-time dependent mean bias adjustment as 

described in Mahlstein et al. (2015) and precipitation was processed using a quantile 

mapping method. In all cases, the correction factors were determined in a leave-one-out 

configuration. 

The bias correction of the input variables proved to be important for achieving skill in 

seasonal water balance (WB) forecasts (Figure 14). While the bias correction didn’t influence 

the skill of the two WB components precipitation and evapotranspiration in terms of 

correlation, discrimination or tercile probability predictions (not shown), the removal of the 

systematic biases of the two components was evidently essential to achieve some skill in 

their combination in form of the cumulative water balance. 

Comparing the skill of the two components precipitation and evapotranspiration with that of 

WB predictions (Figure 14) indicates that skill of WB forecasts is largely dominated by 

precipitation skill. However, there are areas where WB forecast skill differs from that of 
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precipitation. WB forecasts are more skilful in the Northern part of the domain (Sudan and 

Egypt) and less skilful in SW Saudi Arabia than the precipitation forecasts. Both these areas 

receive basically no precipitation during the season considered here, and evidently WB skill 

is then influenced by the respective skill in evapotranspiration. 

 

 correlation (raw) correlation (bias-corr) 

 RPSS (raw) RPSS (bias-corr) 

  

Figure 14: Correlation (top) and ranked probability skill score for tercile predictions (bottom) 
of cumulative JJAS water balance, left: from raw model output, right: after bias-correction of 
daily input variables Tmin, Tmax, and precipitation. Results based on ECMWF S4 hindcasts 
1981-2012 vs WFDEI data set. 
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Figure 15: ROCSS for lower terciles of cumulative precipitation (top left), upper tercile of 
potential evapotranspiration (top right) and lower tercile of water balance predictions 
(bottom), JJAS forecasts issued in May. 

For crop relevant areas in Ethiopia, namely the highlands, skill in WB is not increased 

compared to that of precipitation. Exemplary forecasts of JJAS precipitation and WB for a 

location in N Ethiopia are presented in Figure 16. The forecast signals for precipitation and 

water balance are essentially identical in this case. 

Trying to generalize some of the findings in this study we conclude that carry-over of skill in 

underlying variables onto the multivariate CII is possible. It appears that missing skill in one 

of the underlying variables can only be compensated if that particular variable doesn’t have a 

dominant influence on the multivariate CII (dominant in the sense that the variability of one 

variable largely determines that of the CII). 
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Figure 16: JJAS precipitation (left) and water balance (right) forecasts for an exemplary 
location in northern Ethiopia. Boxes represent the forecast distributions (ECMWF S4 
hindcasts) and circles show the values of the reference data set (WFDEI). 

Key point 

- Carry-over of skill in underlying variables onto multivariate index is possible, 

implying that skill in multivariate index can be obtained despite missing skill in 

one of the underlying variables. 

3.7 Drought and humanitarian needs forecasts for Ethiopia (ENEA)  

The skill of forecasted aggregated indices of climate impact has been compared with the 

corresponding skill in the prediction of the underlying meteorological variables. The ECMWF 

System 4 ensemble forecast has been adopted as the baseline forecasting system, while the 

LEAP platform computes two impact indicators: the crop Water Requirement Satisfaction 

Index (WRSI) and the estimated humanitarian needs in terms of people affected by droughts. 

The analysis shows that even a mild and localized skill of the underlying forecasting system 

can lead to significant performance in the prediction of impact indexes and allows the 

production of usable climate information. 

We have used seasonal forecast of rainfall over Ethiopia as the input to an existing early 

warning system platform (LEAP), which normally uses satellite rainfall estimates to assess 

the performance of the crop season and to provide an early outlook of the humanitarian 

needs for the country. One key objective of the activity conducted under this work package 

was to verify the implication of the current skill of the seasonal forecasting system for the 

production of aggregated indices, beyond the pure meteorological variables. 

The case of LEAP is particularly interesting because there exist two layers of aggregated 

indices. As a first layer, LEAP uses the rainfall date to compute the WRSI, which is 

particularly useful for capturing water stress due to lack of rainfall for different crops. In the 

second step, WRSI is used as the basis to derive an aggregated estimate of the number of 

people that are potentially affected by droughts and need humanitarian assistance. It is 
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therefore useful to compare the skill of forecasts of different indices ranging from the raw 

meteorological variables to the humanitarian needs. The skill of the forecasting system has 

been already analysed in the previous reports. In this report, we focus on the comparison 

between the raw meteorological variables and the aggregated indices.  

Skill of WRSI 

LEAP focuses on quantifying the impacts of droughts on livelihoods in rural areas of 

Ethiopia. It is therefore relevant to evaluate the performance of the forecasts, and of the 

associated indices, in describing dry events. The use of ROCss is particularly useful for this 

purpose since it allows the focus on specific classes of events.  

 

Figure 17: ROC skill scores for the lower tercile of JJAS rainfall from a 15-member ensemble 
hindcast from ECMWF System4 JJAS (left column) and for the corresponding LEAP WRSI 
(right column). The skill scores are evaluated by adopting different observational references: 
TAMSAT (a,b) ARC (c,d) WFDEI (e). The 1996-2012 15-member ensemble hindcast is  
considered for the skill analysis and for the computation of the WRSI. 

Figure 17 compares the ROCss of June-September (JJAS) rainfall and the corresponding 

WRSI derived from the ECMWF System 4 ensemble hindcasts. In the analysis, the events in 

the lower tercile, reflecting dry conditions, are considered and the ensemble hindcasts for the 

(a) (b) 

(c) (d) 

(f) (e) 
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years 1996-2012 are compared with three different observational baselines (ARC2, 

TAMSAT, and WFDEI). 

The comparison shows significant differences in the skill scores depending on the 

observational baseline that is adopted as a reference. It is worth noting that TAMSAT is 

usually considered a more reliable observational rainfall estimate over this area (Dinku et al., 

2008). Overall, the skill of the forecasting system is higher over the north, north-north east 

area of the country, which is also the region with the largest interannual variability of the 

seasonal rainfall, and therefore more exposed to the risk of drought. Over the western area, 

the skill is particularly low. However, this area is usually extremely wet (annual rainfall larger 

than 1000mm) and usually not exposed to the risk of drought. Figure 17 shows also that the 

corresponding WRSI preserves approximately the same pattern of positive skill as the 

underlying rainfall data. Note that the results presented in this section are consistent with the 

findings described in other sections in this report. 

Skill of the needs estimate 

The main scope of LEAP is to produce an outlook of humanitarian needs at national level. 

LEAP adopts the following model to relate drought conditions to the number of beneficiaries: 

 
 

1 

 

which uses the WRSI output from the LEAP software. 

In equation 1 the parameter K is defined as: 

, 

and the parameters are 

N0:  Needs in case of optimal rainfall (chronic food insecure); 

NR:  Population at risk; 

W0:  Lowest observed value of RWRSI; 

WM:  Optimal RWRSI; 

F:  Systemic failure level. 

The regional WRSI (RWRSI) is defined as the weighted average of a woreda-level combined 

WRSI (CWRSI): 

 

 

2 

 

where the subscript W indicates the woreda, P is the corresponding population. Note that the 
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analysis focuses only on those areas of the country that are more exposed to the risk of 

drought, which correspond also to the areas where hindcasts are more skilful. 

 

 

Figure 18: The log-model relation between RWRSI and the number of beneficiaries. 

NOTE: The sample curves are computed by setting the following values of the log-model 

parameters: N0=300000; NR=1000000; W0=52; WM=100. The value of the systemic failure 

level F is indicated by the line style as indicated in the legend. For very low values of the 

parameter F, the relation between RWRSI and the Number of Beneficiaries is approximately 

linear.  

The log-model relation between RWRSI and the number of beneficiaries has a weak slope 

when RWRSI is close to 100 (Figure 18). This means that with a weak water stress the 

number of beneficiaries in needs of assistance remains close to zero. 

As RWRSI decreases, the slope of the curve increases and for RWRSI close to the regional 

failure level F even a small decrease in RWRSI (little additional water stress) a large 

increase in livelihood protection needs can be produced. The model aims at describing the 

failure of community based coping mechanism when the external stress (drought) 

strengthens. 

Figure 19 compares the performance of the forecasting system based on LEAP and ECMWF 

System 4 in predicting the variability of the average WRSI with the performance in the 

prediction of the potential humanitarian needs for the country. In the figure, the observational 

baseline (red line) is based on the TAMSAT rainfall estimate while the ensemble hindcast is 

based on a 15-member subset of the global forecast. 

In this case the increase in the overall skill of the forecast is remarkable. While for the 

average WRSI the correlation with historical records is around 0.30, the correlation of the 

estimated historical humanitarian needs with the corresponding hindcasts is more than 0.80. 
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Note that the needs estimates, based on satellite products, are usually available in 

September-October (end of the crop season), while needs estimates based on forecast 

products would be available already in May, at the beginning of the crop season. Please also 

note that estimated needs do not necessarily match the actual historical beneficiaries, which 

are identified on the basis of additional factors that might not be directly related to the 

occurrence of a drought (including the fact that the national Production Safety Net 

Programme, partially covers for the assistance to annual emergencies). 

  

Figure 19: Hindcast WRSI (left) and needs for humanitarian interventions (right) in Ethiopia 
based on satellite rainfall estimates (red lines) and seasonal forecast products (box-plot). 
Historical actual needs are also reported (blue circles in right panel). 

Three factors contribute to the increased skill of the forecast of the impact index, compared 

to the skill of the underlying meteorological values  

First, the impact index targets a particular class of extreme events (severe rainfall deficit). 

Therefore, it is not strictly required that the forecast describes the full range of climate 

variability. For example, while floods would be linked to a more localized interplay between 

the intensity of rainfall and the local orography, droughts may well be captured as the 

consequence of larger scale anomalies in the atmospheric circulation and therefore 

compatible even with the coarse resolution of global forecasting systems. 

Secondly, the underpinning drought indicator cumulates the effect of rainfall anomalies 

throughout the main crop season. Therefore, the requested skill of the seasonal forecast is 

on the long term, persistent anomalies that are more likely related to large scale anomalies 

of the climate system, such as those brought about by El Nino. 

Finally, the transfer function that is adopted to convert water budget anomalies into needs for 

humanitarian interventions has a logarithmic shape, which enhances the effects of large 

deviations and smooth’s out the presence of relatively small deviation from the norm. As a 

consequence, even a mild skill of the underlying forecasting system can lead to significant 

performance in the prediction of impact indexes and in providing usable climate information. 
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Key points 

- Skill in Water Requirement Satisfaction Index (WRSI) forecasts for Ethiopia is 

marginal, but humanitarian needs estimates can be much more skilfully forecast 

- Additional skill in humanitarian needs estimates likely results from:  

- Sensitivity of needs estimate to long-term large-scale events (droughts) 

- Co-location of WRSI skill in sensitive regions. That is, regions with skilful WRSI 

forecasts happen to be most prone to drought-related food shortages. 

Planned publications 

Forecasting humanitarian needs in Ethiopia. Calmanti, De Felice, Law, Bosi. 

The cost-benefit of humanitarian needs outlook based on ensemble seasonal forecast. 

Venton, Calmanti, Bosi. 
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3.8 Interpretation of results and possible ways forward 

The previous sections have illustrated the potential and challenges related to seasonal 

forecasts of indices in the various sectors considered. In the following, we discuss 

overarching aspects of seasonal forecasts of indices.  

Building on the findings from the humanitarian needs forecasts for Ethiopia (Section 3.7), we 

demonstrate with an alternative set of indices how spatial aggregation with a user 

perspective can help to increase skill and usefulness of seasonal forecasts. Furthermore, we 

show that skill of forecasts of indices is closely related to the skill in seasonal averages of the 

underlying meteorological quantities (Bhend et al., 2016). This finding is useful to estimate 

expected skill in CII forecasts. For many applications, finally, it will be important to explore 

the space-time variability of seasonal forecast skill to identify opportunities for skilful and thus 

useful forecasts to be made. We have addressed this need by developing a web-based 

application to explore seasonal forecast skill. 

Benefits of spatial aggregation 

Location-specific seasonal forecasts of indices are only marginally skilful in many areas of 

the world and in particular in Europe. Spatial aggregation, on the other hand, may help to 

improve the signal to noise ratio of the predictable signal and thereby enhance forecast 

quality (see also discussion on the increase in forecast performance for humanitarian needs 

in eastern Africa presented in the previous section). Such aggregation, however, is only 

beneficial, if the aggregated quantity is still of relevance to potential users.  

 

Figure 20: Correlation (a, c) and RPSS (b, d) of JJA cooling degree days (a,b) and 
population-density-weighted national averages of cooling degree days as a proxy for national 
energy demand for cooling (c,d). Stippling denotes correlations and RPSS significantly (at 
5% level) larger than zero. 

To exploit the benefits of aggregation on skill while preserving relevance to users, one may 

consider issuing forecasts of national (or regional) energy demand for cooling instead of 

gridded forecasts of cooling degree days (such as presented in D22.2). Here, we use the 

population-weighted national average of cooling degree days as a proxy for national energy 

demand for cooling. Correlation and RPSS of gridded forecasts of summer (JJA) cooling 
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degree days derived from daily temperature forecasts with the ECMWF System 4 initialized 

in May are shown in Figure 20 (a, b). Correlation and RPSS of the national energy demand 

for cooling (i.e. weighted national averages of cooling degree days) are shown in Figure 20 

(c, d). We use cooling degree days and national energy demand derived from daily 

temperature time series of ERA Interim (Dee, et al. 2011) for the period 1981-2104 for 

verification. 

After aggregation, we find significantly positive correlation and RPSS for most countries in 

the northern hemisphere. In particular, we find that the area for which skilful forecasts can be 

issued increases (Figure 21). Figure 21 also shows that this improvement is due to the 

aggregation and not due to the weighting (green versus blue boxes). The weighted 

aggregation is here merely useful to preserve user-relevance of the derived aggregated 

index (i.e. national energy demand as opposed to national average of cooling degree days). 

In other cases such as for heating degree days (not shown) the weighting results in an 

additional increase in skill as population density is highest in areas with skill in heating 

degree day forecasts. We stress, however, that such effects are purely coincidental. We 

cannot think of physical reasons as to why skill in forecasts is expected to be higher in 

densely populated areas. In fact, the example with cooling degrees (Figure 21) illustrates the 

lack of a relationship between population density and forecast skill. 

 

Figure 21: Area weighted distribution of correlation (left panel) and RPSS (right panel) for 
JJA CDD. Aggregation to the 2x2 degree grid is shown in red, aggregation to the country 
level (and subsequent disaggregation to the 2x2 grid) in green, aggregation to country level 
with weighting by population density in blue. 

We conclude that the combination of both aggregation and weighting may lead to not only 

more skilful forecasts but also more useful forecasts providing more actionable information to 

users by taking into account their specific needs. It becomes evident, that a user perspective 

has a strong impact on the value of forecasts, an issue that has to be taken into account 

when designing weather and climate services. 
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Relationship of skill in index forecasts with skill in the underlying variable 

We have analysed the relationship between skill in forecasts of climate indices and skill in 

the underlying meteorological variable these indices are derived of (Bhend et al., 2016). With 

synthetic forecasts generated using a toy model, we show that skill in counts and 

accumulated threshold exceedances is generally reduced compared to skill in seasonal 

means if only seasonal variability is predictable. This reduction is strongest for skilful 

forecasts and for thresholds in the tail of the distribution, i.e. for indices describing rare 

events. Similar reductions in skill are also found in the operational forecasting system 

(ECMWF System 4). From the similarity of the idealized toy model results and the results 

from the operational system we conclude that there is little evidence of enhanced (or 

reduced) predictability of CIIs in excess to what can be expected due to predictability of the 

seasonal mean alone. Our results further suggest that skill in predicting seasonal mean 

quantities can be used as an estimate for an upper bound of the expected skill of forecasts of 

indices without having to compute and verify the forecast of indices. This finding may help to 

simplify stakeholder interaction and feasibility studies. Also, our findings imply that forecasts 

of CIIs can be issued without considerable loss in predictive skill for CIIs that describe 

moderately rare events. In many situations, the increased user relevance of index forecasts 

may thus more than compensate for the slight loss in predictive skill of such forecasts. 

Interactive visualisation of skill scores 

Predictive skill of seasonal forecasts varies strongly across multiple dimensions including in 

space, by variable or climatic index, by lead time and time of the year, and by spatio-

temporal aggregation. Generally, seasonal forecasts are more skilful in the tropics than in the 

mid-latitudes and more skilful for temperature and related indices than precipitation. As the 

skill of index forecasts tends to follow closely the skill in forecasts of seasonal means of the 

underlying meteorological quantity (Bhend et al., 2016), skill in seasonal means of basic 

meteorological parameters such as temperature and precipitation can be used as an upper 

bound for the expected skill of forecasts of indices. 

To explore the multi-dimensional variations in skill, we have developed an interactive web 

application (https://meteoswiss-climate.shinyapps.io/skill_metrics, Wehrli et al., 2016). This 

application allows the users of seasonal forecast information to browse through a 

comprehensive set of verification metrics for the operational seasonal forecasting system of 

the ECMWF (ECMWF System 4, Molteni et al., 2010). The application has been developed 

with a user perspective in mind in that users can select a target season and area for which 

they want to analyse forecast skill and compare quality of forecasts with different lead times 

(Figure 22).  

Key Points 

- Weighted aggregation with a user perspective can improve forecast quality. 

- Skill in seasonal mean of underlying variable can be used to estimate an upper 

bound for skill in forecasts of derived (univariate) indices. 

- Forecast quality varies considerably in space and time. Tools to identify 

opportunities for skilful forecasts may help to increase usefulness. 

https://meteoswiss-climate.shinyapps.io/skill_metrics
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Figure 22: Screenshot of the interactive web application to explore forecast skill of ECMWF 
System 4 forecasts developed as part of EUPORIAS. The ranked probability skill score 
(RPSS) for November-January forecasts issued in October (lead month 2) is shown in the 
map, with a time series of RPSS for different lead times for the selected location in the south-
eastern UK shown in the bottom half.  
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4 Lessons Learnt  

Producing and assessing forecasts of climate indices is challenging (also see section on 

lessons learnt in D22.24). In WP22, we have developed common, publicly available software 

tools that facilitate download, post-processing (i.e. bias correction), index computation, and 

verification of seasonal forecasts. The use of common tools and datasets simplifies the 

intercomparison and thereby the interpretation of the results. Sharing these tools is key to 

capacity building within the project and beyond. 

Skill of seasonal forecasts is often marginal over Europe with slightly enhanced predictability 

of temperature-related indices in summer over southern Europe. In general, however, skill 

varies considerably by variable or index, forecasting system, in space and time, with forecast 

lead time and with spatio-temporal aggregation of the forecasts. The variability of forecast 

quality makes it difficult for users to identify windows of opportunity for skilful forecast. As 

part of EUPORIAS, we have therefore developed an interactive web application5 for users to 

explore the space-time variability of seasonal forecast quality. 

Skill of forecasts of CIIs is generally slightly reduced compared to seasonal means of the 

underlying variables these indices are derived of. This reduction in skill is strongest for skilful 

forecasts and indices describing rare events with thresholds at the tail of the distribution of 

daily values; for indices describing moderately rare events, the reduction is much less 

pronounced (Bhend et al. 2016). This implies that often the enhanced user relevance of 

forecasts of indices is expected to outweigh the slight reduction in forecast skill. 

In a few cases, we have been able to demonstrate an added value of forecasts of indices. 

The focus on aspects of climate variability (e.g. droughts) that are dominantly large-scale 

and thus exhibit better predictability can lead to such improvements. Similarly, spatial 

aggregation can help to improve forecast quality. In contrast, small-scale and short-lived 

climatic events (such as intense rainfall) appear to be difficult to forecast.  

Uptake of forecasts of CIIs has been found to vary strongly between different user 

communities. CII forecasts can be useful for communicating with a more general audience 

and with stakeholders from sectors with a history of using CIIs (e.g. heating degree days in 

the energy and insurance sectors, or growing degree days in agriculture). Conversely, 

stakeholders from sectors with a long tradition in impact modelling (e.g. hydrology) are more 

inclined to using impact forecasts. Also, impact forecasts have been shown to benefit from 

sources of predictability not included in the global forecasting systems (e.g. soil wetness and 

snow melt for forecasts of river flow, see D22.2). 

While being identified as a potentially useful additional source of information, lack of forecast 

skill in Europe prevents CII forecasts to be usefully applied in many of the situations 

analysed. Shorter-range forecasts, however, have been demonstrated to be skilful in the 

heat-related mortality case study (Lowe et al., 2016). The focus on sub-seasonal predictions 

with better forecast skill may help to increase uptake and use of climate forecasts in Europe. 

                                                

4
 http://www.euporias.eu/system/files/D22.2_Final.pdf  

5
 https://meteoswiss-climate.shinyapps.io/skill_metrics  

http://www.euporias.eu/system/files/D22.2_Final.pdf
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5 Links Built 

Links to other work packages and deliverables of EUPORIAS 

In WP21, tools developed as part of this work package have been used for the deliverable 

D21.3 on the added value of dynamical and empirical downscaling for forecasts of CIIs. 

D21.3 also discusses relevant results from this deliverable. 

In WP43, findings from WP22 have been used to support the development of a health case 

study microsite: http://cmtool.euporias.eu/.  

Wind speed assessments have been used to support the development of the RESILIENCE 

prototype in WP42. The viticulture indices and the statistical downscaling have been used in 

the development of the FORWINE and the rainfall indices for the SOSRhine case study in 

WP42. 

Verification scores calculated on CIIs based on temperature and precipitation have been 

compared to those of soil wetness and river flow over France to build the RIFF prototype. 

This comparison allowed us to identify catchments with high predictability potential at the 

seasonal scale due to external forcing such as snow melt or aquifers. In an operational 

setting, tests have been conducted with real-time forecasts during summer 2016 with EPTB 

SGL, a dam manager on the Seine basin. CIIs were found to be useful as a complement to 

hydrological products to synthesize complex climate forecasts. 

Technical collaborations 

Results presented in this deliverable have been computed using novel forecast verification 

metrics developed as part of the SPECS project (Siegert, 2015) and processing tools 

developed in EUPORIAS. This set of tools is currently being used in other projects including 

the German MiKlip project on decadal predictions and Copernicus Climate Service activities. 

As a consequence, these tools are being developed further to suit the needs of the growing 

user communities. 

Links to other projects 

Links to the EUPORIAS partner project SPECS, led by BSC, are manifold. In addition to the 

technical collaboration described above, wind speed assessments have been used in WP61 

of SPECS (pilot applications).  

Multiple partners involved in this work package are contributing to the Copernicus Climate 

Change Service (C3S) project QA4Seas targeting the quality control and verification of the 

C3S seasonal forecasts. BSC is further leading the work package on wind power in the 

CLIM4ENERGY project that aims at responding to the C3S objectives, by demonstrating the 

added value of tailored climate information for the transitioning European energy sector. 

MeteoSwiss in collaboration with FU Berlin is involved in the MiKlip 2 project CALIBRATION 

to development of recalibration methods for use with monthly to decadal forecasts. The 

experience on CII forecasting gained within EUPORIAS is also directly feeding into the 

development of user-tailored seasonal forecasts in the Andean region as part of the ongoing 

CLIMANDES project in the framework of WMO’s Global Framework on Climate Services 

http://cmtool.euporias.eu/
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(GFCS). In addition, MeteoSwiss takes part in the Horizon 2020 project HeatShield to 

analyse heat-stress to workers and will implement an early warning system based on long-

range forecasts of heat-related indices.  

As part of the NACLIM project, collaboration between VITO and IC3 has been set up to test 

the feasibility of a TRM forecasting system adapted to urban environments. This ongoing 

collaboration consists in the successful adaptation of a dynamical urban climate model 

(UrbClim) to reproduce the urban heat island effect and the diurnal temperature ranges of 

the city of Barcelona. 

The Earth System Services Group of the Earth Sciences department of the BSC is involved 

in a number of international projects and a national project called RESILIENCE. The team is 

a partner in two European projects within the Horizon 2020 programme: PRIMAVERA and 

IMPREX. PRIMAVERA aims to deliver novel, advanced and well-evaluated high-resolution 

global climate models tailored and actionable by sector-specific end-users such as the 

energy sector; and IMPREX aims to improve the prediction and management of 

meteorological and hydrological extremes which might have an impact on energy facilities, 

energy production and management. BSC also participates in an ERA-NET project called 

NEWA for the preparation of the New European Wind Atlas that will include seasonal and 

sub-seasonal wind predictions. 

  



 

 

EUPORIAS (308291) Deliverable 22.3 Page 48 

 

6 References 
 

Allen, R. G., L.S. Pereira, D. Raes, M. Smith: Crop evapotranspiration - Guidelines for 

computing crop water requirements - FAO Irrigation and drainage paper 56, FAO - 

Food and Agriculture Organization of the United Nations, Rome, 1998. 

Amatulli, G., Camia, A., San-Miguel-Ayanz, J., 2013. Estimating future burned areas under 

changing climate in the EU-Mediterranean countries. Science of the Total Environment 

450–451, 209–222. 

Ballester, J., Robine, J. M., Herrmann, F. R., & Rodó, X. (2011). Long-term projections and 

acclimatization scenarios of temperature-related mortality in Europe. Nature 

Communications, 2, 358. 

Ballester, J., Rodó, X., Robine, J.M. & Herrmann, F.R. (2016). European seasonal mortality 

and influenza incidence due to winter temperature variability. Nature Climate Change 

6, 927–930. 

Bedia, J., Herrera, S., Camia, A., Moreno, J.M., Gutierrez, J.M., 2014a. Forest Fire Danger 

Projections in the Mediterranean using ENSEMBLES Regional Climate Change 

Scenarios. Clim Chang 122, 185–199. doi:10.1007/s10584-013-1005-z 

Bedia, J., Herrera, S., Gutiérrez, J.M., 2014. Assessing the predictability of fire occurrence 

and area burned across phytoclimatic regions in Spain. Nat Hazards Earth Syst Sci 14, 

53–66. doi:10.5194/nhess-14-53-2014 

Bedia, J., Herrera, S., Gutierrez, J.M., Benali, A., Brands, S., Mota, B., Moreno, J.M., 2015. 

Global patterns in the sensitivity of burned area to fire-weather: Implications for climate 

change. Agr. Forest Meteorol. 214–215, 369–379. doi:10.1016/j.agrformet.2015.09.002 

Beguería, S., S. M. Vicente-Serrano, F. Reig, and B. Latorrea (2014). Standardized 

precipitation evapotranspiration index (SPEI) revisited: parameter fitting, 

evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34: 

3001–3023. 

Bhend, J., I. Mahlstein, and M.A. Liniger (2016). Predictive Skill of Climate Indices Compared 

to Mean Quantities in Seasonal Forecasts. Quarterly Journal of the Royal 

Meteorological Society, accepted for publication, doi: 10.1002/qj.2908 

Bladé, I., Liebmann, B., Fortuny, D., Oldenborgh, G.J. van, 2011. Observed and simulated 

impacts of the summer NAO in Europe: implications for projected drying in the 

Mediterranean region. Clim Dyn 39, 709-727. doi:10.1007/s00382-011-1195-x 

Blanco-Ward D, Queijeiro JMG, Jones GV (2007) Spatial climate variability and viticulture in 

the Miño River Valley of Spain. Vitis 46: 63−70 

Branas J, Bernon G, Levadoux L (1946) Eléments de viticulture générale. Imp. Dehan, 

MontpellierJackson D (2001) Climate: monographs in cool climate viticulture–2. 

Daphne Brasell Associates, Wellington 

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda 

MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann 

N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, 

Hóllm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz 

BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F 

(2011) The ERA-Interim reanalysis: configuration and performance of the data 

assimilation system. Q. J. R. Meteor. Soc.137(656):553–597, doi: 10.1002/qj.82. 

http://dx.doi.org/10.1002/qj.2908


 

 

EUPORIAS (308291) Deliverable 22.3 Page 49 

 

Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J., & Ropelewski, C. F. (2008). 

Validation of high‐resolution satellite rainfall products over complex terrain. 

International Journal of Remote Sensing, 29(14), 4097-4110. 

Favà, V., Curto, J.J., Llasat, M.C., 2015. Relationship between the summer NAO and 

maximum temperatures for the Iberian Peninsula. Theor. Appl. Climatol. 1-15. 

doi:10.1007/s00704-015-1547-2 

Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S., Hurrell, J.W., 2009. The 

Summer North Atlantic Oscillation: Past, Present, and Future. Journal of Climate 22, 

1082-1103. doi:10.1175/2008JCLI2459.1 

Healy JD. (2003). Excess winter mortality in Europe: a cross country analysis identifying key 

risk factors. Journal of Epidemiology & Community Health 57, 784-789. 

Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., 2003. An overview of the North Atlantic 

Oscillation, in: Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M. (Eds.), Geophysical 

Monograph Series. American Geophysical Union, Washington, D. C., pp. 1-35. 

Kettaneh A, Fardet L, Mario N, Retbi A, Taright N, Tiev K, Reinhard I, Guidet B, Cabane J. 

(2010). The 2003 heat wave in France: hydratation status changes in older inpatients. 

European Journal of Epidemiology 25, 517-524 (2010). 

Kunst AE, Looman CWN, Mackenbach JP. (1993). Outdoor Air Temperature and Mortality in 

the Netherlands: A Time-Series Analysis. American Journal of Epidemiology 137, 331-

341. 

Lowe, R., Ballester, J., Creswick, J., Robine, J. M., Herrmann, F. R., & Rodó, X. (2015). 

Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves 

and Cold Spells in Europe. International Journal of Environmental Research and Public 

Health, 12(2), 1279-1294. 

Lowe, R.; García-Díez, M.; Ballester, J.; Creswick, J.; Robine, J.-M.; Herrmann, F.R.; Rodó, 

X. “Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: 

Implications for Sub-seasonal to Seasonal Forecasting and Climate Services”. Int. J. 

Environ. Res. Public Health 2016, 13, 206. 

Magalhães, N. (2008) - Tratado de Viticultura - A Videira, A Vinha e o “Terroir”. 1ª. edição. 

Espanha, Chaves Ferreira – Publicações, S.A.. 

Mahlstein, I., C. Spirig, M. A. Liniger, and C. Appenzeller (2015). Estimating daily 

climatologies for climate indices derived from climate model data and observations. 

Journal of Geophysical Research: Atmospheres, 120(7), 2808-2818. 

Malheiro AC, Santos JA, Fraga H, Pinto JG (2010): Climate change scenarios applied to 

viticultural zoning in Europe. Clim Res 43: 163−177 

Marmot Review Team. (2011). The Health Impacts of Cold Homes and Fuel Poverty. 

https://www.foe.co.uk/sites/default/files/downloads/cold_homes_health.pdf. Last 

accessed in January 2016. 

McMichael T, Montgomery H, Costello A. Health risks, present and future, from global 

climate change. BMJ 344, e1359, doi:10.1136/bmj.e1359 (2012). 

MeteoSwiss, 2016. easyVerification: Ensemble Forecast Verification for Large Data Sets. R 

package version 0.3.0. https://CRAN.R-project.org/package=easyVerification  

Michelangeli, P. A., Vrac, M., and Loukos, H.: Probabilistic downscaling approaches: 

application to wind cumulative distribution functions, Geophys. Res. Lett., 36, L11708, 

doi:10.1029/2009GL038401, 2009 

https://www.foe.co.uk/sites/default/files/downloads/cold_homes_health.pdf
https://cran.r-project.org/package=easyVerification


 

 

EUPORIAS (308291) Deliverable 22.3 Page 50 

 

Molteni F, Stockdale T, Balmaseda M, Balsamo G, Buizza R, Ferranti L, Magnusson L, 

Mogensen K, Palmer T, Vitart F (2011). The new ECMWF seasonal forecast system 

(System 4). ECMWF Technical Memorandum 656. 

Pepler, A. S., Díaz, L. B., Prodhomme, C., Doblas-Reyes, F. J., & Kumar, A. (2015). The 

ability of a multi-model seasonal forecasting ensemble to forecast the frequency of 

warm, cold and wet extremes. Weather and Climate Extremes. 

Prodhomme, C., Doblas-Reyes, F., Bellprat, O., & Dutra, E. (2015). Impact of land-surface 

initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dynamics, 1-

17. 

San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., 2013. The European Forest Fire 

Information System in the context of environmental policies of the European Union. 

Forest Policy and Economics 29, 19–25. doi:10.1016/j.forpol.2011.08.012 

Santander Meteorology Group, 2016a. loadeR: R Package for Climate Data Loading and 

Manipulation. R package version 1.0-4. 

https://github.com/SantanderMetGroup/loadeR/wiki 

Santander Meteorology Group, 2016b. downscaleR: Climate data manipulation and 

statistical downscaling. R package version 1.3-3. 

https://github.com/SantanderMetGroup/downscaleR/wiki  

Santos, JA; Malheiro AC; Pinto JG; Jones GA (2012): Macroclimate and viticultural zoning in 

Europe: observed trends and atmospheric forcing. Clim Res 51: 89–103, doi: 

10.3354/cr01056 

Scaife, A.A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R.T., Dunstone, N., Eade, R., 

Fereday, D., Folland, C.K., Gordon, M., Hermanson, L., Knight, J.R., Lea, D.J., 

MacLachlan, C., Maidens, A., Martin, M., Peterson, A.K., Smith, D., Vellinga, M., 

Wallace, E., Waters, J., Williams, A., 2014. Skillful long-range prediction of European 

and North American winters. Geophys. Res. Lett. 41, 2014GL059637. 

doi:10.1002/2014GL059637 

Siegert, S. (2015). SpecsVerification: Forecast Verification Routines for the SPECS FP7 

Project. R package version 0.4-1. http://CRAN.R-

project.org/package=SpecsVerification  

Trenberth, K.E., Paolino, D.A., 1980. The Northern Hemisphere Sea-Level Pressure Data 

Set: Trends, Errors and Discontinuities. Mon. Wea. Rev. 108, 855–872. 

doi:10.1175/1520-0493van Wagner, C.E., 1987. Development and structure of the 

Canadian Forest Fire Weather Index (Forestry Tech. Rep. No. 35). Canadian Forestry 

Service, Ottawa, Canada. 

Vicente-Serrano, S.M., S. Begería, and J. I. López-Moreno (2010). A Multiscalar Drought 

Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration 

Index, Journal of Climate, 23, 1696-1718. 

Viegas, D.X., Bovio, G., Ferreira, A., Nosenzo, A., Sol, B., 1999. Comparative study of 

various methods of fire danger evaluation in southern Europe. International Journal of 

Wildland Fire 9, 235. doi:10.1071/WF00015 

Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J. and Viterbo, P., 2014. The 

WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to 

ERA-Interim reanalysis data. Water Resources Research, 50, 

doi:10.1002/2014WR015638 

https://github.com/SantanderMetGroup/downscaleR/wiki
http://cran.r-project.org/package=SpecsVerification
http://cran.r-project.org/package=SpecsVerification


 

 

EUPORIAS (308291) Deliverable 22.3 Page 51 

 

Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., Österle, H., Adam, J.C., 

Bellouin, N., Boucher, O., Best, M., 2011. Creation of the WATCH Forcing Data and Its 

Use to Assess Global and Regional Reference Crop Evaporation over Land during the 

Twentieth Century. Journal of Hydrometeorology, 12, 823–848. 

doi:10.1175/2011JHM1369.1http://dx.doi.org/10.1002/qj.2908 

Wehrli, K., J. Bhend, M. Liniger, 2016. Verification of Seasonal Forecasts. Technical Report 

MeteoSwiss, in preparation. http://www.meteoswiss.admin.ch/home/services-and-

publications/publications%20.html?topic=/content/meteoswiss/tags/topics/forschung-

und-zusammenarbeit/publication/fachbeitraege  

http://dx.doi.org/10.1002/qj.2908

