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1. Executive Summary 

The aim of this work package is to assess the value of seasonal forecasts for a collection of 
user-targeted climate information indices (CIIs, see Table 3.1.1). CIIs make it possible to 
provide decision relevant climate information to users in a very direct way. As such, CIIs 
represent an easy to use and relatively easy to produce alternative to more sophisticated 
impact models, but may also provide information of more relevance to the user than 
forecasts of meteorological variables usually produced by seasonal forecasting centres. 
Forecasts of CIIs evaluated in this work package are used to complement the prototypes 
and case studies developed as part of the EUPORIAS project. This deliverable documents 
the implementation of different CIIs and the calibration approaches applied to take into 
account systematic model errors. Estimates of the prediction skill of CII forecasts and its 
uncertainty also form part of the deliverable. 

Table 3.1.1: List of climate information indices analysed in this deliverable. 

Climate index Stakeholder sector Figure(s) in deliverable 
Percentage of time with 
anomalous wind speed 

Energy Figure 3.2.1 - Figure 3.2.6 

Heating and cooling degree 
days 

Energy Figure 3.3.1 - Figure 3.3.6 

Growing season precipitation 
and suitability, hydrothermal, 
Selianinov, cool night, Huglin 
heliothermal, and Winkler 
indices 

Agriculture (wine 
production) 

Figure 3.4.1 - Figure 3.4.7 

Frost days Agriculture, transport Figure 3.5.1 - Figure 3.5.2 
Heavy precipitation days and 
total precipitation on wet 
days 

Agriculture, hydrology, 
insurance 

Figure 3.6.1 - Figure 3.6.8 

Intense precipitation Hydrology, civil protection, 
agriculture 

Figure 3.7.1 - Figure 3.7.5 

River flow and soil moisture Agriculture, hydrology, 
insurance 

Figure 3.8.1 - Figure 3.8.6 

Palmer drought severity 
index 

Agriculture, hydrology Figure 3.9.1 - Figure 3.9.3 

Water requirement 
satisfaction index 

Agriculture Figure 3.10.1 - Figure 3.10.2 

Fire weather Civil protection, forestry Figure 3.11.1 - Figure 3.11.7 
Temperature related 
mortality 

Health Figure 3.12.1 - Figure 3.12.3 

 

We analyse different approaches to calibration of daily forecast time series to derive CII 
indices. Generally, CII forecast skill is found to be rather insensitive to the choice of 
calibration method. In some cases, however, using more sophisticated calibration methods 
(e.g. quantile mapping compared to mean de-biasing) improves the skill in CII forecasts. For 
specific applications such as forecasting impacts on health, it may be relevant to consider 
multiple indices (e.g. peak timing of excess mortality, maximum incidence at the peak, etc.) 
which ideally are calibrated consistently across the different indices. We further find that 
indices defined with respect to percentiles of the forecast and observed distribution 
respectively (e.g. percentage of time with wind speed above the 90th percentile) are 
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advantageous in that such indices are less prone to systematic model errors than indices 
defined with respect to absolute thresholds (e.g. frost days). However, having in mind that 
most indices operate on daily values, the estimation of relative thresholds must be handled 
with care.  

The forecast lead times for seasonal forecasts are too long to be able to deterministically 
forecast extreme events at a daily to weekly resolution. To account for the inherent 
uncertainty in long-range forecasts, such forecasts are therefore framed probabilistically. 
Consequently, it is important that climate indices (and impact models) are computed using 
all available ensemble members rather than the ensemble mean. Also, calibration methods 
have to be applied in a manner that allows for the uncertainty information contained in the 
ensemble forecast to be retained. 

In general, forecast skill of seasonal forecasts of CII in Europe is limited with enhanced skill 
in summer compared to winter and generally higher skill for indices related to temperature 
than to precipitation. However, skill varies strongly by season, region, lead time, climate 
index, and spatio-temporal aggregation; some regions show skill in specific seasons which 
may open a window of opportunity for forecasts to be useful in specific cases. Further 
research, however, is needed to understand variations in the skill in forecasting CIIs. Such 
further research should also target the temporal variability of predictability and thereby 
forecast skill. 

Also, forecasts of CII are found to be at most as skilful as the forecasts of seasonal means of 
the underlying meteorological variables. In contrast, enhanced skill is found in forecasts of 
river flow based on a hydrological model. Forecasts from the hydrological model driven with 
atmospheric parameters from seasonal forecasts, however, are only marginally more skilful 
than forecasts driven with climatological input. The skill in forecasts of river flow and soil 
moisture is thus mainly due to the long-term memory of initial conditions for the hydrological 
model including soil moisture and snow. This highlights the presence of sources of 
predictability not included in the operational seasonal forecasting system that may be 
exploited for targeted applications. 

Apart from long-term memory from initial conditions determining interannual variability, 
external forcing such as increasing greenhouse gases are a potential source of predictability 
on seasonal timescales. Preliminary analysis suggests that long-term trends are an 
important source of predictability in winter, whereas predictability in summer seems to be 
mainly independent of long-term trends. Further research, however, is needed to better 
understand the sources of predictability in Europe. Also, the impact of calibration on the 
representation of trends (and thereby predictability) in CII forecasts needs further study to 
develop trustworthy, well-calibrated forecasts of CIIs. 
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2. Project Objectives 

With this deliverable, the project has contributed to the achievement of the following 
objectives (DOW, Section B1.1): 

No. Objective Yes No 

1 

Develop and deliver reliable and trusted impact 
prediction systems for a number of carefully selected 
case studies. These will provide working examples of 
end to end climate-to-impacts-decision making 
services operation on S2D timescales.  X   

2 

Assess and document key knowledge gaps and 
vulnerabilities of important sectors (e.g., water, 
energy, health, transport, agriculture, tourism), along 
with the needs of specific users within these sectors, 
through close collaboration with project stakeholders.   X   

3 
Develop a set of standard tools tailored to the needs 
of stakeholders for calibrating, downscaling, and 
modelling sector-specific impacts on S2D timescales.  X   

4 

Develop techniques to map the meteorological 
variables from the prediction systems provided by the 
WMO GPCs (two of which (Met Office and 
MeteoFrance) are partners in the project) into 
variables which are directly relevant to the needs of 
specific stakeholders.   X   

5 

Develop a knowledge-sharing protocol necessary to 
promote the use of these technologies. This will 
include making uncertain information fit into the 
decision support systems used by stakeholders to 
take decisions on the S2D horizon. This objective will 
place Europe at the forefront of the implementation of 
the GFCS, through the GFCS's ambitions to develop 
climate services research, a climate services 
information system and a user interface platform.    X 

6 

Assess and document the current marketability of 
climate services in Europe and demonstrate how 
climate services on S2D time horizons can be made 
useful to end users.    X 
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3. Detailed Report  

3.1. Introduction 

In the following we present the methodology and skill analysis for a selection of climate 
information indices relevant for different sectors. These indices include  

• measures of extreme wind speed relevant for wind turbine operation,  
• heating and cooling degree as a proxy for energy demand for heating and cooling,  
• the growing season precipitation and suitability, and the hydrothermal, Selianinov, 

cool night, Huglin heliothermal, and Winkler indices relevant for wine production, 
• frost days relevant to agriculture and transportation,  
• precipitation anomalies to estimate water availability for agriculture,  
• measures of intense precipitation to forecast floods, 
• river flow and the soil wetness index, the Palmer drought severity index and soil 

moisture anomaly, and the water requirement satisfaction index to forecast  the water 
balance and droughts, 

• fire weather index to forecast years and seasons with anomalous fire danger, 
relevant to a range of decision makers including forestry, land management, and civil 
protection sectors, and 

• heat and cold related mortality relevant for the health sector. 

3.2. Wind 

3.2.1. Definition and Equation 
Two indices based on 6-hourly 10-m wind speed are used in order to characterize the low 
and high wind speeds in a particular season. The first index is the percentage of time where 
the average wind speed is lower than the 10th percentile (sfcWindq10nd) and the second 
one is defined as the percentage of time where the wind speed is greater than the 90th 
percentile (sfcWindq90nd). 

The two indices can be expressed as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠10𝑛𝑛 =
1
𝑛

 �𝑑𝑖

𝑛

𝑖=1

 𝑑𝑖 = �
0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖 > 𝑞10𝑡ℎ
1  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖 < 𝑞10𝑡ℎ

  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠90𝑛𝑛 =
1
𝑛

 �𝑑𝑖

𝑛

𝑖=1

 𝑑𝑖 = �
0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖 < 𝑞90𝑡ℎ
1  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖 > 𝑞90𝑡ℎ

  

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖 is the wind speed for a particular time step (using six-hourly data in this 
case) in a month, the 𝑞10𝑡ℎ and 𝑞90𝑡ℎ are the 10th and 90th climatological percentiles 
(respectively) for each month and 𝑛 is the number of days in a month. 
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These indices have been estimated for each month and then averaged across the season. 
The methodology followed was proposed by Pepler et al. (2015) in the first place and 
developed further in Prodhomme et al. (2015). 

To obtain the indices, the climatological 90th and 10th percentiles are estimated from the 
six-hourly wind speeds over the period 1981-2012. The climatological percentile is then used 
to calculate the percentage of time in which the four values per day of the wind speed 
exceed the 90th percentile threshold (or are below the 10th percentile threshold). Then, the 
frequency of days over and under the corresponding climatological percentile in a month is 
estimated. The methodology has been applied separately for the ERA-Interim reanalysis 
data (Dee et al., 2011) and for the ECMWF S4 predictions (Molteni et al., 2011) because the 
percentiles in the reference reanalysis and in the simulations can be very different. 

3.2.2. Bias Correction 
The sfcWindq90nd and sfcWindq10nd indices have been computed from the ECMWF S4 
predictions of the six-hourly 10-m wind speeds with 51-member ensembles over the period 
1981-2012. The forecasts considered for illustration are those issued on the 1st of 
November, for which three-month statistics for the December-January-February (DJF, also 
known as one-month lead seasonal forecast) period are used. The analysis of the wind 
speed extremes focuses on the DJF boreal winter since this season was found to have the 
largest wind speed variability in the Northern Hemisphere. 

The sfcWindq10nd and sfcWindq90nd indices were compared with the corresponding 
variables computed from the six-hourly 10-m wind speed from the ERA-Interim reanalysis. 

To identify possible systematic model errors, maps of bias of both sfcWidnq10nd and 
sfcWindq90nd indices have been computed (Figure 3.2.1a and b, respectively). These maps 
have been calculated as the difference between the climatology of the indices obtained from 
ECMWF S4 predictions and that of the reference dataset. 

The largest bias is found for sfcWindq10nd index, corresponding to low wind speeds (Figure 
3.2.1a). In tropical regions the differences between the predictions and observations reach -
0.12, indicating that the prediction system shows a 12% less time under the 10th percentile 
than ERA-Interim. For the sfcWindq90nd index (Figure 3.2.1b) a negative bias is found in 
some regions, such as South-eastern Asia or Western Russia, revealing that in those 
regions the prediction system provides less time over the 90th percentile than the reanalysis 
dataset over the DJF season. 

These differences between the bias for the two indices suggest that in the regions where the 
systematic error is present, the climatological probability density function relative to the six-
hourly wind speed predictions does not match with the probability density function of ERA-
Interim as well as the associated percentiles values. 

In general, the differences between the indices (sfcWindq10nd and sfcWindq90nd) in the 
predictions and those computed for the reanalysis are low and mainly located over oceanic 
regions. This result suggests that the bias correction is a not critical step to correct the wind 
extreme indices, because they are based on relative thresholds (10th and 90th percentiles) 
that are computed separately for the predictions and the reference, taking into account 
implicitly the bias correction. 
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Figure 3.2.1: Bias of wind speed extreme indices: a) Percentage of time under the 
climatological 10th percentile and b) Percentage of time over the climatological 90th 
percentile mean in winter (DJF). The bias is computed from ECMWF System 4 and ERA-
Interim. Forecasts from System 4 have been initialized the 1st of November in the period of 
1981-2012.  
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3.2.3. Forecast Quality  

3.2.3.1. Anomaly Correlation 
The anomaly correlation measures the correspondence between the observed and predicted 
anomalies and it is useful to quantify the potential skill, which is the maximum skill that can 
be achieved for an index in a particular region given a forecast system. 

Figure 3.2.2 shows the correlation between ensemble-mean predictions of the wind speed 
extreme indices (sfcWindq10nd and sfcWindq90nd) and the indices obtained from ERA-
Interim. A perfect agreement along time between the reference and simulated indices would 
give 1.0. Red areas show that the forecast are on average better than a naive climatological 
forecast, while blue areas appear where the predictions are worse than the climatology. 

The sfcWindq10nd (Figure 3.2.2a) and sfcWindq90nd (Figure 3.2.2b) indices show a 
positive and significant skill at the 95% confidence level over tropical and oceanic regions. 
Positive values are located in Northern South-America, North-eastern Brazil, Western Africa 
and South-eastern Asia. The highest skill in the tropical region is related to anomalies in the 
tropical sea surface temperatures (SST), in particular in the El Niño-Southern Oscillation 
(ENSO) region, which is the main source of predictability at seasonal time scales (Kirtman 
and Pirani, 2009). 

Although the predictability of the seasonal prediction systems is limited in extra-tropical 
latitudes, regions such as Canada or Central North America exhibit also significantly positive 
correlation for both the sfcWindq10nd and sfcWindq90nd indices. These values can be 
associated with the ENSO teleconnections and with other sources of seasonal to interannual 
predictability such as the persistence of the North Pacific decadal oscillation (Lienert et al., 
2011). 

In Northern Europe the sfcWindq10nd shows positive skill, although it is only significant in 
the North Sea, Baltic Sea, Northern Scandinavia and South West of the Iberian Peninsula. 
However, the sfcWindq90nd only displays significant skill in Scandinavia, North East of the 
Iberian Peninsula and East of the British Islands. This illustrates the asymmetry of the skill 
between the two indices. 

Skilful forecasts of sfcWindq10nd and sfcWindq90nd can help users to save costs related 
with the vulnerabilities and risks associated with the wind extremes. Therefore, the potential 
skill of sfcWindq10nd and sfcWindq90nd found in some key regions for the wind industry, 
with a number of wind farms located there, such as North America, the North Sea or the 
Northeast of Brazil, demonstrate that there could be useful information for the decision 
making processes in wind energy operations. However, potential skill does not imply that the 
forecasts are either useable or useful because they also need to be reliable. 
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Figure 3.2.2: Correlation of forecasted ensemble mean of: a) Percentage of time under the 
climatological 10th percentile; b) Percentage of time over the climatological 90th percentile, in 
winter (DJF) from ECMWF System 4 and Era Interim. Forecasts with System 4 have been 
initialized on the 1st of November over the period 1981-2012. The dots mark the areas where 
the skill is significant at the 95% confidence level (i.e. System 4 is significantly more skilful 
than a climatological forecast). 

3.2.3.2. ROC Area 
The area under the ROC curve characterises the quality of a forecast system by describing 
the system's ability to discriminate correctly between occurrence and non-occurrence of 
events. Two dichotomous events have been considered: below-normal category and above-
normal category. The normal category has not been included in this analysis because the 
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signal-to-noise ratio is small for this category and the climatological distribution becomes 
nearly as effective as accurately defining slight deviations from climatology (Kumar et al., 
2009). 

The highest ROC area skill score appears in the tropical regions for both below-normal 
(Figure 3.2.3) and above-normal (Figure 3.2.4) categories, similar to the correlation (Figure 
3.2.2). The ROC skill score of sfcWindq90nd (Figure 3b) is higher than sfcwWindq10nd 
(Figure 3.2.3a) in North America for the below-normal category. The sfcWindq90nd also 
exhibits values significantly larger than zero in Northern Europe, particularly in the British 
Islands, Northern Scandinavia and the North Sea. Nevertheless, the sfcWindq10nd index 
displays less skill than sfcWindq90nd in Northern Europe for such event. 

The above-normal category map (Figure 3.2.4) shows positive skill for North America and 
East Asia. The sfcWind10nd for such event (Figure 3.2.4a) displays positive skill in some 
regions of Europe, and the sfcWindq90nd exhibits skilful regions in the Northern part of the 
Iberian Peninsula, Scandinavia and Eastern part of Mediterranean Sea. 

The differences in the ROC area skill score between the below and above normal category 
(Figure 3.2.3 and Figure 3.2.4) indicate that asymmetry in skill for each wind speed extreme 
index exist, with regions where the below-normal category is more skilful than those regions 
for the above-normal category. In addition differences between the sfcWindq10nd and 
sfcWindq90nd show that asymmetry in skill is also present for the wind speed distribution. 



 

EUPORIAS (308291) Deliverable 22.2 Page 19 
 

 

Figure 3.2.3: ROC area skill score for below-normal category of forecasted: a) Percentage of 
time under the climatological 10th percentile; b) Percentage of time over the climatological 
90th percentile, in winter (DJF) from ECMWF System 4 and ERA Interim. Forecasts with 
System 4 have been initialized on the 1st of November over the period 1981-2012. The dots 
mark the areas where the skill is significant at the 95% confidence level (i.e. System 4 is 
significantly more skilful than a climatological forecast). 
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Figure 3.2.4: Same as Figure 3 but for the above-normal category. 
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3.2.3.3. Spread-error Ratio 
The spread-error ratio is a useful estimate to quantify the ability of the ensemble to represent 
the forecast error in a statistical sense. It is computed as the square root of the ratio between 
the ensemble variance and the mean squared error of the ensemble mean with the verifying 
observations. A fair version of the spread-error ratio skill score has been computed (Figure 
3.2.5) as in Weigel (2012). For this fair version of the spread-error ratio, the intra ensemble 
sample variance is inflated to account for the finite ensemble size. In the resulting maps, the 
red values correspond to a ratio higher than 1, indicating that over-dispersion (under-
confidence) of the ensemble exists. The ratio lower than 1 (blue colours), corresponds to 
under-dispersion (over-confidence). 

The spread-error ratio of forecasted sfcWindq10nd (Figure 3.2.5a) and sfcWindq90nd 
(Figure 3.2.5b) indices display values lower than 1 in several regions around the tropics, as 
in the tropical Pacific, Southern America, central Africa and South-eastern Asia. In those 
regions the ensemble is overconfident for both indices. The regions with over-dispersion 
(under-confidence) in the ensemble appear in the Caribbean Sea, Northern America, China, 
Western Africa and Eastern Europe for both indices.  

Differences in the spread-error ratio are found for the two indices. Under-dispersion of the 
ensemble appears for the sfcWindq10nd index in Northern Europe and Northern Asia. This 
can be interpreted as the ensemble to be too narrow to represent the forecast uncertainty, 
which implies that additional perturbations should be introduced for the ensemble to be 
representative of the true uncertainty. Under-confidence is found over the Iberian Peninsula 
and the North of Scandinavia for the sfcWindq10nd index (Figure 3.2.5a). These differences 
show an asymmetry in the skill for the 6-hourly wind speed distribution from which the 
sfcWindq10nd and sfcWindq90nd indices have been computed.  
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Figure 3.2.5: Fair spread-error ratio of a) Percentage of time under the climatological 10th 
percentile; b) Percentage of time over the climatological 90th percentile, in winter (DJF) from 
ECMWF System 4 and ERA Interim. Forecasts with System 4 have been initialized on the 1st 
of November over the period 1981-2012. 

3.2.3.4. CRPSS 
The continuous ranked probability skill score (CRPSS) is a skill score based on the CRPS 
that is defined as the integrated squared difference between the cumulative forecast and 
observation distribution functions. It can be interpreted as a probabilistic generalisation of the 
mean absolute error. A perfect forecast would have a CRPSS equal to 1. Negative values of 
CRPSS (blue colours) imply that the skill of the estimated forecast probabilities is worse than 
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the use of climatological frequencies as forecast. Positive values of CRPSS (red colours) 
indicate that the forecast is better than the climatological probabilities. 

 

Figure 3.2.6: Fair continuous ranked probability skill score (CRPSS) of: a) Percentage of 
time under the climatological 10th percentile; b) Percentage of time over the climatological 
90th percentile, in winter (DJF) from ECMWF System 4 and ERA Interim. Forecasts with 
System 4 have been initialized on the 1st of November for the period 1981-2012. The dots 
mark the areas where the skill is significant at the 95% confidence level (i.e. System 4 is 
significantly more skilful than a climatological forecast). 
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In this section a fair version of CRPSS was used to reward ensembles that behave as 
though their members and the verifying observation are sampled from the same distribution 
(Ferro, 2014). 

As in the previous examples, the tropics are the region with highest CRPSS (up to 0.5), 
particularly northern South America and the Northeast of Brazil. Some of central North 
America retains a positive and significant skill at the 95% confidence level for both 
sfcWindq10nd and sfcWindq90nd wind speed extreme indices (Figure 3.2.6). But nearly all 
other continental regions, including Europe, have not significant values. 

The differences that have been found between Figure 3.2.6 and Figure 3.2.2 indicate that 
although the potential skill to predict the wind extremes indices is high in many regions 
around the world, predicting the full distribution of the indices is still a challenge. We are 
currently working on the calibration of the predictions to reduce the negative skill values. 

We have introduced two modifications from the DOW in this deliverable:  

• Both the upper and lower percentile wind speeds have been investigated, despite 
that in the DOW only the upper wind speeds are mentioned. As the wind turbine 
operating thresholds are instantaneous wind speed values, they cannot be compared 
directly to seasonal mean values. For this reason, the upper and lower extreme wind 
speed percentiles were used. 

• IC3 collaborates with several stakeholders from the wind industry which have shown 
interest on the wind speed extreme indices. Therefore, in this deliverable we only 
focus our analysis on these wind speed extremes. However such indices can be 
estimated from different variables such as solar radiation and different thresholds, an 
option that will be explored in the future. 

• Two Climate Information Indices (CIIs) have been developed for the renewable 
energy sector with a focus on the upper and lower wind speed thresholds, as 
suggested by the industry. A forecast quality assessment has been made of the wind 
speed CIIs corresponding to the percentage of time in a season under the 10th 
climatological percentile and exceeding the 90th climatological percentile. 

The Climate Forecasting Unit at IC3 assessed the CIIs relevant for wind power stakeholders, 
which are predominantly based on wind speed. The percentage of time below and above the 
10th and 90th percentiles respectively (considered as extremes values) show a small bias 
because the CII has been computed based on a relative threshold from the model’s 
climatology. For that reason, the bias correction is not essential for the predicted indices. An 
assessment of the skill of the percentage of time above and below the 10th and 90th 
percentile was made using several forecast quality measures. The differences in the skill 
between the two indices reveal that an asymmetry in the skill for the wind speed distribution 
is present. As expected, the more robust the assessment, the lower the observed skill, with 
CRPSS showing the lowest values. In general, the highest skill is found over the tropics and 
the central US region for both indices. 
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Key Points: Assessing Skill in Wind Speed 

- Indices with thresholds defined relative to the simulated and observed 
climatology respectively are advantageous in that such indices are less affected 
by systematic model biases than indices defined relative to absolute thresholds. 

- While there is considerable potential skill in predicting wind speed, predicting 
the full distribution is still challenging. Statistical recalibration of forecasts may 
help to improve predictions of wind speed related indices. 

3.3. Heating and cooling degree days 

3.3.1. Data and Methods 
We present seasonal forecasts of the European Centre for Medium-range Weather 
Forecasts' (ECMWF) System 4 (Molteni et al., 2011) forecasting system for the summers 
(JJA) from 1981-2014 and winters (DJF) from 1981-2013. We derive seasonal heating 
degree day (HDD) and cooling degree day (CDD) forecasts from bias corrected daily 
temperature time series of ECMWF System 4 initialized in May for summer forecasts and 
November for winter forecasts. The daily temperature time series are bias corrected against 
daily temperature from the ERA Interim reanalysis (Dee et al., 2011). Daily bias correction is 
estimated using a local linear regression smoothing of the daily observed and forecast 
climatologies as suggested by Mahlstein et al. (2015). Bias correction is performed in leave-
one-out cross validation mode using data from 1981-2010 to estimate the correction factors. 

We use the following definitions for heating and cooling degree days: 

𝐻𝐻𝐻 = 1/𝑛��18− 𝑇𝑖 , if 𝑇𝑖 < 12
0, otherwise

𝑛

𝑖=1

 

𝐶𝐶𝐶 = 1/𝑛��𝑇𝑖 − 22, if 𝑇𝑖 > 22
0, otherwise

𝑛

𝑖=1

 

In Figure 3.3.1, we show the bias in winter HDD and summer CDD. Biases in the indices 
prevail after bias correction of the daily time series due to systematic biases in the 
distribution of forecast daily temperature and daily temperature variability not accounted for 
by the bias correction. These biases are in general larger for HDD than for CDD. Please 
note, however, that also the climatological mean for HDD is larger than for CDD due to the 
different definition and thresholds. Areas with positive and negative bias in HDD and CDD 
are forecast roughly cancel out, indicating that the daily bias correction works well apart from 
sampling uncertainty and the above sources of errors not accounted for. 
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Figure 3.3.1: Bias of winter (DJF) heating degree days (a) and summer (JJA) cooling degree 
days (b) in units of degree days / day. Areas where zero HDD or CDD are observed for more 
than one third of the years are masked in grey. 

We validate seasonal time series of HDD and CDDs against HDDs and CDDs derived from 
daily temperature time series of the ERA Interim reanalysis. Areas with no HDD and CDD 
occurrences are masked out as the forecasts are trivial and the climatological forecast will 
always be at least as good as a dynamical forecast. Therefore, we only present forecasts 
quality metrics for areas where zero HDD (CDD) are observed in at most one third of all the 
years. Using this criterion we avoid difficulties in interpreting forecasts of rare events and we 
also ensure that the terciles for tercile forecasts are well defined. 

3.3.2. Seasonal Forecast Quality of Indices Related to Energy 
Consumption 

3.3.2.1. Correlation 
In Figure 3.3.2 we show the correlation of the ensemble mean seasonal HDD and CDD time 
series with the respective time series from ERA-Interim. We find significant correlation (at 
the 5% level) in large parts of the northern hemisphere and only limited areas with 
correlations below zero (indicating negative correlation skill compared to a climatological 
forecast without interannual variability). However, correlations over land rarely exceed 0.6 for 
HDD in winter, and regions of strong correlation over land in summer for CDDs are 
constrained to subtropical and tropical areas. In Europe we find significant but weak 
correlation for HDD in winter over the British Isles and parts of central western Europe. In 
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summer, southern and eastern Europe exhibits significant correlation exceeding 0.6 in the 
eastern Mediterranean. 

 

Figure 3.3.2: Correlation of winter (DJF) heating degree days (a) and summer (JJA) cooling 
degree days (b). Stippling indicates correlations significantly (at the 5% level) larger than 
zero. 

3.3.2.2. Ranked Probability Score 
In Figure 3.3.3 we show the ranked probability score (RPSS) for tercile forecasts. The RPSS 
characterizes to what extent we are able to probabilistically forecast above normal, normal 
and below normal conditions. RPSS larger than zero indicates forecasts that are skilful 
compared to a climatological forecast (i.e. a constant 33.3% probability for the three tercile 
categories), RPSS smaller than zero indicates forecasts that are worse than a climatological 
forecast. In analogy to the correlation results shown in Figure 3.3.2, we find limited areas of 
significant RPSS for HDD in winter (Figure 3.3.3a). For CDD in summer, we find significant 
RPSS throughout the subtropics and tropics as well as in the western USA and in China 
(Figure 3.3.3b). In Europe, significant RPSS is found mainly in the eastern Mediterranean in 
summer. 
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Figure 3.3.3: Ranked probability skill score for tercile forecasts of winter (DJF) heating 
degree days (a) and summer (JJA) cooling degree days (b). Stippling indicates correlations 
significantly (at the 5% level) larger than zero. 

3.3.2.3. Continuous Ranked Probability Score 
In Figure 3.3.4 we show the continuous ranked probability score (CRPSS). In contrast to the 
RPSS that compares probabilistic category forecasts, the CRPSS measures the absolute 
discrepancy between forecast probability distribution and observations and is thus sensitive 
to both the bias and the lack of reliability of the forecast. Therefore, the CRPSS is a more 
strict score for which it is harder to score well. 

CRPSS for winter HDD forecasts is positive only in a few areas in the northern subtropics, 
whereas two distinct regions with strongly negative CRPSS are found in the western US and 
central Asia (Figure 3.3.4a). In contrast, CRPSS for summer CDD is significantly positive for 
large areas in the subtropics and tropics, interspersed with smaller regions of negative 
CRPSS (Figure 3.3.4c). 

The areas of negative CRPSS for HDD and CDD forecasts are due to a combination of 
remaining biases in the forecast indices (Figure 3.3.1) and lack of correlation (Figure 3.3.2). 
Both of which can in principle be accounted for by a recalibration of the HDD and CDD 
forecasts. Such a recalibration should then result in at least zero skill. Here we use the 
climate conserving recalibration of Weigel et al. (2009). Indeed, most of the areas of strongly 
negative CRPSS disappear when using the recalibrated forecasts (Figure 3.3.4b, d). As we 
compute the recalibration (like the bias correction) in cross-validation mode, there are 
remaining areas of negative CRPSS in particular for CDD forecasts in Siberia. These are 
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due to the uncertainty in estimating the recalibration parameters from a finite sample. Also 
CRPSS skill is generally slightly reduced for the recalibrated forecasts compared to the bias 
corrected forecasts due to the additional sampling uncertainty of the parameters for the 
recalibration. This illustrates that post-processing of forecasts tends to affect the skill, 
positively through the reduction of systematic biases but also negatively through the 
sampling uncertainty of the parameters of the post-processing (see also Gangstø et al., 
2012) 

 

Figure 3.3.4: Continuous ranked probability skill score for winter (DJF) heating degree days 
(a) and summer (JJA) cooling degree days (b). Stippling indicates correlations significantly 
(at the 5% level) larger than zero. 

3.3.2.4. Spread to Error Ratio 
To assess if the forecasts of indices are reliable, that is if forecast probabilities correspond to 
observed frequencies, we compute the spread to error ratio. The spread to error ratio is only 
a necessary but not sufficient condition for reliability. Also it has been found that spread error 
correlation is low even for perfectly reliable ensembles (e.g. Hopson, 2014) and thus the 
spread to error ratio will be subject to considerable sampling uncertainty. Nevertheless, we 
use it here as a quick and simple metric to assess forecast reliability. 
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Figure 3.3.5: Spread to error ratio for winter (DJF) heating degree days (a) and summer 
(JJA) cooling degree days (b). 

In Figure 3.3.5 we show the spread to error ratio of HDD forecasts for the winter season and 
CDD forecasts for summer. HDD forecasts are found to be overconfident (i.e. spread to error 
ratios smaller than 1) in large parts of the northern mid-latitudes, whereas in the western US 
and central Asia, forecasts are found to be over-dispersive. In contrast, the pattern of spread 
to error ratios for CDD forecasts for the summer season is much patchier. We find indication 
of overconfidence in north-western Russia and tropical areas, and indication of over-
dispersion elsewhere. The regions of overconfidence in HDD and CDD forecasts do not 
directly relate to regions of remaining biases in HDD and CDD (see Figure 3.3.1). Therefore, 
the lack of reliability cannot be explained by remaining biases in the system, but is either due 
to sampling variability or is in fact a property of the forecasting system. 

3.3.3. Sources of Predictability 
In the following, we analyse to what extent predictability in HDD and CDD is driven by a 
trend in mean temperature and thus a trend in the indices. Such a linear trend is reflective to 
the global warming signal and is likely brought about by changes in external forcings. To 
analyse this, we contrast correlation of HDD and CDD with the correlation of detrended HDD 
and CDD. Skill in detrended forecasts is reflective of skill in predicting interannual variability 
independent of such low frequency changes. While our aim is to predict interannual 
variability, it is important to note that there is intrinsic value in ensemble forecasts even in the 
absence of interannual skill as such forecasts help to better characterize the current climate 
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and current climate risks than a climatological assessment that does not account for long-
term trends. 

We find significant correlations in detrended HDD throughout large parts of the northern 
hemisphere (Figure 3.3.6a). In particular, correlations of detrended HDD are in most parts 
comparable to correlation of HDD with trends (Figure 3.3.2), and therefore suggest that most 
of the predictability in winter HDD in the northern hemisphere is due to long-term trends (and 
thus likely due to changes in external forcings). For CDD in summer, however, the situation 
is remarkably different (Figure 3.3.6c). While the correlations of detrended CDD in the 
tropics and areas of the northern mid-latitudes are comparable to the correlations of CDD 
with trends, in large areas in the subtropics, Eastern Europe and central Asia and the 
western US, this is not the case (red shading in Figure 3.3.6d). In these areas we can thus 
conclude that there is predictability beyond the long-term trend. Further investigation will 
have to reveal whether sources of this interannual predictability can be identified (the El Niño 
- Southern Oscillation being a likely candidate, see Pepler et al., 2015). 

 

Figure 3.3.6: Correlation skill for detrended winter (DJF) heating degree days (a) and 
detrended summer (JJA) cooling degree days (c) along with the difference in correlation 
between the correlation in the index with trend (see also Figure YY) minus the correlation in 
the detrended index (b, d). Stippling in a and c indicates correlations significantly (at the 5% 
level) larger than zero. 

3.3.4. Conclusions 
Heating and cooling degree days are defined with respect to absolute temperature 
thresholds. Therefore, the time series of daily mean temperature as forecast by the 
forecasting system have to be bias corrected (calibrated) previous to analysis. The skill in 
forecasting heating and cooling degree days, however, is mostly independent of the bias 
correction method used (not shown) and simple bias correction methods are sufficient.  

While there is some skill in forecasting cooling degree days in southern Europe, elsewhere 
in Europe and for heating degree days in winter, skill is limited. In other areas, e.g. the 
tropics and the western US, considerable prediction skill has been identified. Remaining 
areas of negative skill (Figure 3.3.3 and Figure 3.3.4) indicate the potential for further 
improvement of the forecasts. In areas of negative skill, we should rather resort to a 
constant, climatology-based forecast than issue misleading forecasts. Post-processing of the 
forecasts of climate indices can help to achieve that.  
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Key Points: Cooling and Heating Degree Days 

- Bias correction of daily forecast series is important for climate indices defined 
with respect to absolute thresholds. 

- Skill in forecasting heating and cooling degree days is limited with enhanced 
skill for cooling degree days in southern Europe in summer. 

3.4. Indices Relevant for Wine Production 

A specialized set of CII relevant for the wine producing stakeholders were calculated (Table 
3.4.1) from ERA-Interim reanalysis (Dee et al., 2011) and 15 members of System 4 seasonal 
forecasts (S4 for the remainder of this section, Molteni et al., 2011). These CII were 
computed for the period 1981-2010 and for the European domain at 0.7º resolution. The 
indices are mostly based on temperature and/or precipitation accumulated between April 
and September, thus the seasonal forecast initialized in March (i.e. with a lead time of one 
month) were used to derive the CII forecasts.  

Table 3.4.1: Climate indices for wine production. Definition and usefulness 

Index Definition Utility 

Growing season 
precipitation (GSP) 𝐺𝐺𝐺 = �𝑃

𝑆𝑆𝑆

𝐴𝐴𝐴

 
One of the most discriminating 
climatic variables (Blanco-Ward et 
al. 2007) 

Hydrothermal Index 
(HyI) 

𝐻𝐻𝐻 = �𝑇𝑚𝑚𝑚𝑚 × 𝑃
𝑆𝑆𝑆

𝐴𝐴𝐴

 

 

Considers both precipitation and 
temperature regimes for 
estimating the risk of downy 
mildew disease (Branas et al. 
1946) 

HyI < 2500°Cmm - low 

HyI > 5100°Cmm - high 

Selianinov Index (SI) 𝑆𝑆 = �𝑃
(𝑇mean − 10)�

𝑆𝑆𝑆

𝐴𝐴𝐴

 

Measure of hydric regime, i.e. 
effectiveness of precipitation in 
the growing season (Magalhães 
2008). 

SI<1 - insufficient 

1< SI < 3 - normal 

SI >3 - excessive 
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Cool night index (CI) 𝐶𝐶 = �𝑇𝑚𝑚𝑚
30�

𝑆𝑆𝑆

 

Provides a relative measure of 
ripening potential, being equal to 
the average minimum 
temperature during the month 
before harvest (Tonietto et al. 
2004) 

• very cool nights (CI ≤ 
12°C), 

• cool nights (12 < CI ≤ 
14°C) 

• temperate nights (14 < CI 
≤ 18°C) 

• warm nights (CI > 18°C) 

Growing season 
suitability (GSS) 

𝐺𝐺𝐺 =
∑ 𝑑𝑇𝑇𝑇𝑇𝑇>10º𝐶
𝑆𝑆𝑆
𝐴𝐴𝐴

∑ 𝑑𝑆𝑆𝑆
𝐴𝐴𝐴

�  Useful as a zoning tool (Santos et 
al 2012) 

Huglin Heliothermal 
Index (HI) 

𝐻𝐻

= �
(𝑇𝑚𝑚𝑚𝑚 − 10) + (𝑇max − 10)

2

𝑆𝑆𝑆

𝐴𝐴𝐴

𝑑 

 

Useful as a zoning tool (Huglin 
1978)  

HI ≤ 1500 too cool 

1500<HI ≤ 2100 temperate 

2100<HI ≤ 2700 warm 

2700<HI ≤ 3000 very warm 

HI > 3000 too warm 

Growing Degree Day 
(GDD) or Winkler 
index 

𝐺𝐺𝐺 = �(𝑇𝑚𝑚𝑚𝑚 > 10º𝐶 − 10)
𝑆𝑆𝑆

𝐴𝐴𝐴

 

Useful as a zoning tool to 
differentiate between grape 
varieties and climate (Winkler et 
al. 1974) 

 

3.4.1. Bias Correction 
Systematic errors were identified through the analysis of maps of bias determined by the 
difference between the indices calculated with S4 ensemble mean and ERA-Interim 30 year 
climatology. Given the large bias for all indices, bias correction was carried out using 
quantile mapping of the ensemble mean daily precipitation, maximum, minimum and mean 
temperature. For each day, a 31 day moving window (i.e. ±15 days centred on the day of 
interest) is used as in Wilcke et al. (2013). Thus each ECDF is determined from 930 values, 
taking into account autocorrelation and the interannual variability of each day. In the case of 
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precipitation, the ensemble mean dry day frequency is corrected to be equal to the dry day 
frequency of ERA Interim. In addition to the ensemble mean correction, the ensemble 
spread is also corrected following Barnston et al. (2015).  

3.4.2. Forecast Quality 

3.4.2.1. Growing Season Precipitation 
The Growing Season Precipitation (GSP), as the accumulated precipitation from April to 
September, i.e. the growing season, can be used as a discriminating index for vineyard 
distribution. Areas with GSP above 600mm are usually considered excessively humid, 
whereas areas with GSP bellow 200mm are extremely dry. Although considerably reduced 
in relation to a simple bias correction with the climatology mean, significant biases still 
prevail after the bias correction of the daily time series (Figure 3.4.1a). Whereas the 
uncorrected forecast showed a dry bias, a wet bias is found after bias correction. This 
illustrates the difficulty in bias correction of the precipitation. The anomaly correlation (Figure 
3.4.1b), illustrates S4’s low skill in describing the correspondence between ERA Interim and 
predicted anomalies. The quantile mapping bias reduction technique usually does not 
improve correlation and in some instances it may even degrade it. Thus, no improvement in 
relation to the simple bias correction is observed. Positive but low values are found in the 
western part of the Iberian Peninsula and British Isles. The highest correlation skill is found 
in northern France and southern Sweden. The western Iberia, the Mediterranean and central 
Europe all have negative anomaly correlations. 

Positive skill in forecasting the lower GSP tercile is found in western Iberia and north-
western France, indicating some ability to forecast drought in these areas (Figure 3.4.1c). In 
the remaining areas in Europe the forecast has no or very little skill. North-western France 
also shows some predictability for precipitation seasons wetter than the 3rd tercile (Figure 
3.4.1d). The spread to error ratio (Figure 3.4.1e) displays values well above 1 for most of the 
continent indicating over-dispersion/under-confidence of the ensemble, thus the ensemble is 
too broad and over-emphasizes forecast uncertainty. In central and southern Iberian 
Peninsula under-dispersion occurs. The negative continuous ranked probability skill score 
(Figure 3.4.1f) implies that using forecast probabilities is worse than using climatological 
frequencies as a forecast. This lack of skill is likely due to residual biases and improved 
post-processing of the forecasts may result in continuous ranked probability skill scores 
closer to potential skill as indicated by the correlation (Figure 3.4.1b).   
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Figure 3.4.1: Growing season precipitation (a) Bias, (b) Anomaly Correlation, ROC area skill 
score for the (c) lower tercile and (d) upper tercile, (e) Spread to Error ratio, (f) Continuous 
ranked probability skill score 

3.4.2.2. Hydrothermal Index 
According to Branas et al. (1946) the hydrothermal index can be used to determine the risk 
of the development of mildew. According to the climatology, all of central Europe has a high 
risk of mildew occurrence and only southern Greece, Sicily, Sardinia and southern Iberia 
Peninsula are low risk areas. A relatively low bias, circa 10%, occurs from Iberia to central 
Europe. Higher biases occur in Scandinavia, Italy and the Balkans (Figure 3.4.2a). The 
anomaly correlation and the ROCs maps (Figure 3.4.2b, c and d) are very similar to the GSP 
anomaly correlations and ROCs, indicating that the precipitation distribution dominates the 
index skill. The spread to error ratio (Figure 3.4.2e) displays values between 0.4 and 0.5 for 
most of the continent indicating under-dispersion/over-confidence of the ensemble, thus the 
ensemble is too narrow and does not represent forecast uncertainty. As in GSP, the 
continuous ranked probability skill score (Figure 3.4.2f) is negative.  
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Figure 3.4.2: Hydrothermal Index (a) Bias, (b) Anomaly Correlation, ROC area skill score for 
the (c) lower tercile and (d) upper tercile, (e) Spread to Error ratio, (f) Continuous ranked 
probability skill score 

3.4.2.3. Selianinov Index 
A measure of the effectiveness of precipitation in the growing season is presented through 
the Selianinov index (SI). According to Magalhães (2008), an SI lower than 1 indicates that 
the precipitation, during the growing season, in that region is insufficient for wine grape 
production. Due to the non-linear interactions between precipitation and temperature, the 
index shows high biases and low skill in all of the forecast skill measures (Figure 3.4.3). 
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Figure 3.4.3: Selianinov Index (a) Bias, (b) Anomaly Correlation, ROC area skill score for the 
(c) lower tercile and (d) upper tercile, (e) Spread to Error ratio 

3.4.2.4. Cool Night Index 
The Cool Night Index mean pattern exposes that almost all of Europe exhibits very cool to 
temperate nights (average minimum temperatures in September lower than 18°C), meaning 
that excessively warm nights in later maturity stages of grapes are relatively rare in Europe. 
On average, the S4 ensemble mean is 0.5ºC colder than the climatology mean (Figure 
3.4.4a), yet the anomaly correlation is negative or near zero in all of Europe, indicating no 
skill in representing the observed anomalies (Figure 3.4.4b). The ROCs score for the first 
tercile (Figure 3.4.4c), displays some skill in northern Germany, Eastern Europe and the 
Iberian Peninsula indicating the ability to forecast the colder September mean minimum 
temperatures. In contrast and with the exception of northern Germany, in these regions the 
S4 forecast has no skill in the upper ROCs tercile. This can be found in France, Germany 
and Balkans. The spread to error ratio has values above 0.5 in Germany and higher than 0.6 
in the other regions, indicating that the forecast ensemble is under-dispersive. The mildly 
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negative continuous ranked probability skill score (Figure 3.4.4f) also implies that the skill of 
the forecast probabilities is worse than the use of climatological frequencies as forecast. 

 

Figure 3.4.4: Cool Night Index (a) Bias, (b) Anomaly Correlation, ROC area skill score for the 
(c) lower tercile and (d) upper tercile, (e) Spread to Error ratio, (f) Continuous ranked 
probability skill score 

3.4.2.5. Growing Season Suitability  
From a thermal perspective, a given region can be considered suitable for grapevine 
growing when daily mean temperatures are predominantly above 10ºC (Winkler et al. 1974) 
during the growing season, i.e. April to September in Europe. Regions where at least 90% of 
the days meet this thermal requirement tend to be the most suitable for wine production. 
This is true for most of the Iberian Peninsula and Italy. Nonetheless, vineyards are also 
grown at higher latitudes and also altitudes, where the growing season is shorter and thus 
an 80% threshold will also be considered. Thus, the German and French wine producing 
regions are considered. Figure 3.4.5a shows a residual negative bias for all of the above 
mentioned areas as well as for other regions in Europe. The exceptions are the Alps and 
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Scandinavia where a positive bias is registered, indicating a forecast warmer than the 
climatology. Negative anomaly correlation is registered in the south of Iberia and the Alps, 
indicating that on average the forecast is disconnected from the observed anomalies in 
these regions (Figure 3.4.5b). In the other regions a positive correlation, albeit less than 0.5, 
is indicative of some skill. This is also evident in the ROCs positive scores for similar regions 
as the correlation (Figure 3.4.5c and d). The spread to error ratio is very similar to the Cool 
Night Index but with more skill. 

 

Figure 3.4.5: Growing Season Suitability (a) Bias, (b) Anomaly Correlation, ROC area skill 
score for the (c) lower tercile and (d) upper tercile, (e) Spread to Error ratio 

3.4.2.6. Huglin Heliothermal Index 
The Huglin index (HI) integrates the day-length into the temperature distribution, thus 
explaining the northern viticulture extension. The lower temperatures observed at higher 
latitudes are compensated by the longer insolation during the growing period. HI below 1500 
is usually considered not suitable for viticulture. The area with HI>1500 in ERA Interim and 
in S4 bias corrected climatologies is in reasonable agreement with European grapevine 
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distribution. Although considerably reduced in relation to a simple bias correction with the 
climatology mean, some biases still prevail after the bias correction of the daily time series 
(Figure 3.4.6a). These biases are mostly associated to central European orography, i.e. the 
Alps and Carpathians. The anomaly correlation (Figure 3.4.6b) shows positive skill, although 
limited, in the Mediterranean area and no skill in central Europe.  

 

Figure 3.4.6: Huglin Heliothermal Index (a) Bias, (b) Anomaly Correlation, (ROC area skill 
score for the (c) lower tercile and (d) upper tercile, (e) Spread to Error ratio, (f) Continuous 
ranked probability skill score 

Low ROCs skill was obtained in the lower tercile in Portugal, southern France and Germany 
mainly, indicating a difficulty in the forecast to determine occurrences in the lower tercile in 
these areas (Figure 3.4.6c). The highest skill occurs in Eastern Europe and Turkey. The skill 
for values in the upper tercile increases considerably in western Iberia and north-western 
France (Figure 3.4.6d). The forecast, however, has no skill for occurrences in the upper 
tercile in central Europe.  
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In the Mediterranean, the spread-error ratio (Figure 3.4.6e) is close to one indicating that the 
ensemble spread is able to represent the forecast uncertainty. Although to a lesser degree, 
the positive values in central Europe also show a similar signal. Yet, the continuous ranked 
probability score is negative for the entire continent and climatological frequencies would 
provide a better forecast (Figure 3.4.6f). Again, the negative CRPSS is likely due to the 
presence of biases and over-confidence of the forecast. 

3.4.2.7. Growing Degree Day  
The Huglin (Figure 3.4.6) and the Growing Degree Day (Figure 3.4.7) indices show very 
similar patterns and thus similar analysis.  

 

Figure 3.4.7: Growing Degree Day (a) Bias, (b) Anomaly Correlation, (ROC area skill score 
for the (c) lower tercile and (d) upper tercile, (e) Spread to Error ratio 
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3.4.3. Conclusions 
Although the bias correction with quantile mapping and the spread correction reduced the 
biases considerably and brought the spread to error ratio to values closer to 1, biases in the 
indices remain. Therefore, the forecast skill (as measured by the continuous ranked 
probability score) is negative and using forecast probabilities is worse than using 
climatological frequencies as a forecast. To overcome this limitation, an attempt to correct 
the indices directly should be considered.  

Key Points: Indices Relevant for Wine Production 

- There is limited potential skill for forecasting indices relevant for wine production 
in Europe. Skill varies strongly by region and index. 

- Bias correction of the input quantities used to compute the indices reduced 
biases considerably, but some biases remain. These biases negatively affect 
forecast skill. An additional calibration of the index should be attempted to 
reduce the effect of biases on forecast skill. 

3.5. Frost Days 

3.5.1. Data and Methods 
We present seasonal forecasts of the European Centre for Medium-range Weather 
Forecasts' (ECMWF) System 4 forecasting system (Molteni et al., 2011) for the winters 
(DJF) from 1981-2013. We derive the number of frost days (FD), defined as days with 
minimum temperatures below zero degree C, from bias corrected daily minimum 
temperature time series of ECMWF System 4 initialized in November. The daily minimum 
temperature time series are bias corrected against daily minimum temperature from the ERA 
Interim reanalysis (Dee et al., 2011) using quantile mapping (Panofsky and Brier, 1968). To 
account for the seasonal cycle and lead time dependence of systematic errors, quantile 
mapping is carried out using a moving window of 31 days centred on the day of interest as in 
Themeßl et al. (2012) and Wilcke et al. (2013). In addition, we carry out quantile mapping in 
leave-one-out cross validation mode using data from 1981-2010 to estimate the correction 
factors. 

We use quantile mapping instead of a simple bias correction with the climatological mean 
such as for heating and cooling degree days (Section 3.3.1). With quantile mapping, residual 
biases in frost days are small (Figure 3.5.1a), whereas FDs are underestimated by up to 5 
days per season when using mean debiasing (Figure 3.5.1b). 

In the following we present the evaluation of time series of forecasted winter frost days 
against winter frost days derived from the ERA Interim reanalysis. In regions where almost 
every day is a frost day or where frost days rarely occur, the year to year variability in frost 
days is too limited to meaningfully interpret forecast quality. Therefore, we analyse forecast 
quality only in regions where at least 5% and less than 95% of the days per winter are 
classified as frost days on average (see mask in Figure 3.5.1). These regions are roughly 
confined to the US, western and central Europe, the Middle East, and eastern China. 
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Figure 3.5.1: Bias of winter (DJF) frost days derived from forecasts calibrated using quantile 
mapping (a) and mean de-biasing (b). Bias is shown in units of days per season. Areas 
where frost days occur on average on less than 5% or more than 95% of the days per 
season are masked in grey. 

3.5.2. Seasonal Forecast Quality for Frost Days 
Correlation of the ensemble mean FD with FD derived from the ERA Interim reanalysis is 
generally weak (Figure 3.5.2a). Significant positive correlations are found in the Middle East 
and eastern Asia with correlations generally below 0.6. In north-western Europe positive 
correlations are found, but these generally do not exceed 0.4. 
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Figure 3.5.2: Correlation (a), RPSS (b), CRPSS (c) and spread to error ratio (d) of forecasts 
of winter (DJF) frost days. Stippling in a-c indicates correlations and skill scores significantly 
(at the 5% level) larger than zero. 

Similar to the correlation shown in Figure 3.5.2a, we find very limited skill as measured by 
the ranked probability skill score (RPSS) for tercile forecasts (Figure 3.5.2b) and the 
continuous ranked probability skill score (CRPSS, Figure 3.5.2c). A few grid points with 
significantly positive RPSS and CRPSS can be found in the Middle East and eastern China. 
In Europe, RPSS and CRPSS of winter frost days is marginal, whereas predominantly 
negative RPSS and CRPSS is found in the western US. The similarity of RPSS and CRPSS 
illustrates that the lack of skill in CRPSS is not due to residual biases in forecasted frost days 
(Figure 3.5.1) as these do not affect the ternary category forecasts used to compute the 
RPSS. The limited skill is also not due to uncertainty introduced by the out-of-sample 
calibration of daily minimum time series used to derive seasonal frost days. FD forecasts 
derived from in-sample calibrated daily minimum temperatures exhibit similarly marginal skill 
(not shown). This leads us to conclude that the ECMWF System4 is not able to skilfully 
predict frost days in the northern hemisphere. 
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3.5.3. Conclusion 
Forecasts of winter frost days are non-trivial only in limited areas of the mid-latitude. 
Elsewhere, almost every day is a frost day or frost days occur very rarely. Potential skill in 
forecasting frost days as measured by correlation is fairly limited with areas of significant 
positive skill in the Middle East and eastern China. Actual skill as measured by the ranked or 
continuous ranked probability skill scores is found to be limited or negative. As for indices 
relevant for wine production, additional calibration of the index may provide a way forward to 
remove negative skill where there is little potential skill and maybe even enhance skill in 
areas where there is potential skill. 

Key Points: Frost Days 

- The choice of bias correction method matters for forecasts of frost days. When 
using simple mean de-biasing, simulated frost days derived from de-biased 
forecast time series exhibit substantial biases. These are considerably reduced 
using more sophisticated daily calibration methods such as quantile mapping.  

- At present, ECMWF System 4 seems to be unable to skilfully forecast frost day 
occurrence in the northern hemisphere. 

3.6. Very Heavy Precipitation Days and Total Precipitation 

3.6.1. Definition of Indices 
The indices presented here represent a selection of indices used in ECA&D and are relevant 
to water management and agriculture sectors. Under the right conditions the indices can act 
as indicators of potential extreme river flow. A set of indices based on E-OBS v11 (Haylock 
et al., 2008) is presented in the following link: 
http://www.ecad.eu/utils/mapserver/eobs_maps_indices_R.php. The definition of indices is 
based on Klein Tank et al., 2009: 

Very heavy precipitation days (R20mm) 

Let 𝑅𝑅𝑖𝑖 be the daily precipitation amount for day 𝑖 of period 𝑗. Then counted is the maximum 
number of days where: 

𝑅𝑅𝑖𝑖  ≥ 20𝑚𝑚 

Total precipitation on wet days (> 1mm, PRCPTOT) 

Let 𝑅𝑅𝑤𝑤 be the daily precipitation amount on a wet day 𝑤 in period 𝑗. Then: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  �𝑅𝑅𝑤𝑤

𝑛

𝑗=1  

 where 𝑅𝑅𝑤𝑤 ≥ 1 𝑚𝑚 

3.6.2. Observations, Seasonal Forecast Data and Bias Correction 
E-OBS v11 (Haylock et al., 2008) is used as observations, while the ECMWF System-4 
(Molteni et al., 2011) is used as the seasonal forecast data. Here, 30-years of re-forecasts of 
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the model (1981-2010) are used, with a 15-member ensemble and 1-month lead-time. 
Results are presented for the winter season (3 months statistics, December-January-
February) with initialization 1st of November and spring season (3 months statistics: March-
April-May) with initialization 1st of February. The area of interest is Central Europe, focusing 
on the areas of the Rhine and Meuse rivers. This area is chosen in connection with the DWD 
case study on operational water management for the Rhine basin. Winter and spring are 
selected based on the occurrence of observed high flows in the Rhine basin (Photiadou et 
al., 2015). After interpolating the seasonal forecasts to the E-OBS grid, these were bias 
corrected using quantile mapping. 

Maps of biases between the climatology of the indices derived from the bias corrected 
forecast time series and the observations are presented in Figure 3.6.1 and Figure 3.6.2, for 
winter and spring respectively. R20mm doesn’t show systematic errors but a rather mixed 
bias for both seasons. PRCPTOT shows in winter a dry bias over most of Central Europe 
and the countries surrounding the Rhine and Meuse basins. For spring, a wet bias is present 
for PRCPTOT in the Swiss basin and northern Italy and southern France.  

 

Figure 3.6.1: Winter bias of (a) R20mm and (b) PRCPTOT 
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Figure 3.6.2: Spring bias of (a) R20mm and (b) PRCPTOT 

3.6.3. Skill Assessment of Seasonal Forecasts 

3.6.3.1. Anomaly Correlation 
Correlations between the ensemble mean and observed indices are presented for winter and 
spring in Figure 3.6.3 and Figure 3.6.4 respectively. For both R20mm and PRCPTOT, 
positive correlations are present in northern Germany and north Italy, while negative 
correlations are present in most of France and Switzerland. Generally, correlations do not 
exceed 0.5 suggesting limited predictability of both heavy precipitation days (R20mm) and 
total precipitation during wet days (PRCPTOT). 
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Figure 3.6.3: Correlation of winter (a) R20mm and (b) PRCPTOT 

 

Figure 3.6.4: Spring correlation of (a) R20mm and (b) PRCPTOT 
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3.6.3.2. Continuous Ranked Probability Skill Score 
In Figure 3.6.5 and Figure 3.6.6 we show the continuous ranked probability skill score 
(CRPSS) for the two indices for winter and spring respectively. For winter the CRPSS is 
negative for all the countries in the Rhine basin with some small exceptions over Germany. 
In contrast, CRPSS in spring has larger areas with positive skill, such as Northern Germany 
and the Netherlands. For both seasons, the CRPSS reflects the negative correlations shown 
in Figure 3.6.3 and Figure 3.6.4. 

 

Figure 3.6.5: Continuous ranked probability skill score for winter (a) R20mm and (b) 
PRCPTOT. Black dots indicate the areas with significant skill at the 95% confidence level. 
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Figure 3.6.6: Continuous ranked probability skill score for spring (a) R20mm and (b) 
PRCPTOT. Black dots indicate the areas with significant skill at the 95% confidence level. 

3.6.3.3. Ranked Probability Skill Score 
In Figure 3.6.7 and Figure 3.6.8 we show the Ranked Probability Skill Score (RPSS) for 
winter and spring respectively for the indices R20mm and PRCPTOT. For winter R20mm, 
RPSS is characterized by distinct negative values over France, Belgium, Luxembourg and 
Switzerland, with the exception of small areas over north-eastern Germany. Similar results 
are found for spring with the exception of small areas over France, Belgium, Netherlands 
and north-western Germany where positive values indicate a skilful forecast compared to a 
climatological forecast. For PRCPTOT, negative values in winter are present over northern 
France, Belgium, Netherlands, Switzerland and southern Germany, while positive values are 
present in south-western France and northern Germany. In spring, negative values dominate 
most of Central Europe with the exception of northern Germany and the Netherlands with 
significant RPSS, and north-eastern Switzerland. This is consistent with the positive 
correlation found in these areas in spring. 
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Figure 3.6.7: Ranked probability skill score (terciles) for winter (a) R20mm and (b) 
PRCPTOT. Black dots indicate the areas with significant skill at the 95% confidence level. 
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Figure 3.6.8: Ranked probability skill score (terciles) for spring (a) R20mm and (b) 
PRCPTOT. Black dots indicate the areas with significant skill at the 95% confidence level. 

3.6.4. Conclusions 
Heavy precipitation days and total precipitation on wet days are indices relevant for 
forecasting extreme river flow. We identify considerable potential prediction skill (as 
measured by correlation) for total precipitation in spring in northern Germany and the 
Netherlands resulting in actual skill (as measured by CRPSS and RPSS). Elsewhere skill is 
limited. No robust pattern of forecast skill for heavy precipitation days has been identified. 
This illustrates the difficulty when working with climate indices representative of more 
extreme events.  

Key Points: Heavy Precipitation Days and Total Precipitation 

- Skill in predicting winter and spring total precipitation in central western Europe 
is limited to northern Germany and the Netherlands in spring. 

- In contrast, no robust patterns of forecast skill are found for seasonal forecasts 
of heavy precipitation days. This illustrates the difficulty when working with 
indices relating to rare events. 
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3.7. Heavy Precipitation 

3.7.1. Definition and Equation 
In order to analyse intense precipitation in the seasonal model output we defined an index 
which looks at the integrated sum of the value of precipitation exceeding the upper quartile 
of the rainfall distribution during wet days. We call such an index Intense Precipitation Index 
(IPI). That is: 

𝑰𝑰𝑰 = � 𝐦𝐦𝐦 (𝑷𝒊 − 𝑷𝟕𝟕%,𝟎)
𝒏

𝒊=𝟏
 

Where 𝑷𝒊 is the daily mean rainfall at day 𝒊, and the summation is over all days of the 
season. Such a formulation implies that for each season we will only have one number 
which represents the “intensity” of precipitation during the whole season.  

3.7.2. Bias Correction 
Being defied in relation to the model climatology the IPI should be less affected by model 
biases. Nevertheless looking at the histogram of both model output and the observations we 
realised that biases still exist. These were removed using a simple de-biasing approach 
based on the mean value of both observations and models over the entire season and 
hindcast set.  

3.7.3. Skill Scores and Significance 

3.7.3.1. Anomaly Correlation 
First we show the anomaly correlation between the ensemble mean IPI forecasts and IPI 
derived from WATCH forcing data (Weedon et al., 2014) for the summer (JJA) seasons from 
1995-2010 (Figure 3.7.1). We find generally low values of correlation that is generally not 
significantly different from zero. Three areas of positive correlation exist: the NW part of the 
Pyrenees and Gascoigne region of France, the southern part of the Balkans, and Tunisia. It 
is also worth stressing that no correlation between observations and forecasts can be 
identified over the Alpine ridge which jointly with the area around Poland is one of the 
regions where IPI reaches the highest climatological values (Figure 3.7.2) 
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Figure 3.7.1: Correlation between the ensemble mean IPI forecast by ECMWF system 4 for 
JJA period and the corresponding observations extracted from WATCH forcing data for the 
period 1995-2010 Forecasts with System 4 have been initialized in May and 25 of the 
available ensemble members have been used for the calculation. 
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Figure 3.7.2: Observed climatology of intense precipitation. 

3.7.3.2. ROC Area 
The ROC area skill score (Figure 3.7.3) is used to distinguish forecast skill for different 
events, here IPI falling in the lower or upper tercile of the distribution corresponding to 
summers that are characterised by more or less intense precipitation events. 

We find some marginal skill (compared with a climatological forecast) in the region around 
the Mediterranean and more evidently in SW France and the western Balkans. Interestingly 
the regions where ROC scores reach their highest values correspond to regions of highest 
correlation between the ensemble means and the observations but also to the region where 
the climatology of the intense precipitation events is very marginal.  
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Figure 3.7.3: ROC area skill score for summer (JJA) Intense Precipitation Index falling in the 
upper tercile (a) and lower tercile (b) for the period from 1995-2010 from forecasts with 
ECMWF System 4 initialized in May. Seasonal IPI were computed from the raw series of 
daily rainfall. The ROC area skill score is computed with reference to a climatological 
forecast.  

3.7.3.3. Spread-error Ratio 
The spread to error ratio of IPI forecasts from 1995-2010 is generally relatively close to 1 
(Figure 3.7.4). Of the regions where anomaly correlation and ROC indicated some potential 

a) 

b) 
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only SW France appear to be relatively close to 1 whilst for both Tunisia and the Balkans the 
spread to error ratio is clearly well above 1 (over-dispersive).  

 

Figure 3.7.4: Spread to error ratio of JJA IPI forecasts with ECMWF System 4 for the period 
1995-2010. Spread to error ratios larger than unity indicate forecasts that are over-
dispersive, spread to error ratio smaller than unity indicate forecasts that are over-confident.  

3.7.3.4. CRPS 
The continuous ranked probability skill score for IPI forecasts from 1995-2010 is close to 
zero everywhere in Europe (Figure 3.7.5). This suggests that forecasts from a dynamical 
forecasting system are as accurate (in CRPS terms) as a climatological forecast that is the 
same every year. The comparison with the ROC area skill score presented earlier, suggests 
that while there may be little skill in absolute IPI forecasts (as shown by the CRPSS), 
forecasts with reduced detail (e.g. in tercile categories instead of absolute numbers) may 
nevertheless be skilful for some areas. CRPSS is only marginally affected by the detrending 
(not shown). 
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Figure 3.7.5: Continuous ranked probability skill score (CRPSS) of JJA IPI forecasts from 
ECMWF System 4 for the winters from 1995-2010. Seasonal IPI has been computed using 
the bias corrected daily total precipitation series from System 4. CRPSS has been computed 
with respect to a climatological forecast (using all the other years as benchmark). A 
correction for the effect of the limited ensemble size (both of the ensemble forecast and the 
climatological forecast) has been applied as proposed in Ferro et al. (2008).  

Key Points: Intense Precipitation Index 

- There is some skill for forecasts of the heavy precipitation index in summer in 
south-eastern Europe and south-western France. Elsewhere skill is fairly 
limited. 

3.8. Water Balance and Drought in France 

Water available for agriculture during the critical period of summer can be estimated by the 
seasonal precipitation amount over the June-July-August quarter. Classically, this 
information is given in both deterministic and probabilistic format. The deterministic format is 
the mean anomaly: comparison of forecast mean of the year of interest to forecast 
climatology, the latter calculated from the hindcast period. The probabilistic format is 
generally a probability to be above/below a threshold, for example a tercile. 

These products can be assessed using deterministic (Anomaly correlation, Mean Square 
Score) and probabilistic scores (ROC areas, Brier scores). Figure 3.8.1 shows an example 
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of probabilistic score for the French seasonal model ARPEGE System 3, for each 2.5°*2.5° 
mesh of the model. Scores are calculated for the quarter June-July-August, for an 
initialization in May (Lead Time 1), at the European scale, and for the upper and lower 
terciles. Scores are globally low over Europe and in particular over France. 

 

Figure 3.8.1: Map of ROC areas calculated for the lower tercile of precipitation for summer 
over Europe issued from ARPEGE System 3. 

3.8.1. Context and Definition  
Water balance and drought (related to agriculture) are well described using river flows and 
soil moisture. These two CIIs are provided by hydrological models coupled to seasonal 
forecast models. For example, Météo-France runs the seasonal hydrological forecasting 
suite called Hydro-SF (Céron et al. 2010) that is used in the climate service prototype named 
RIFF. Basically the hydrological suite (SIM) is forced by seasonal forecasts issued from the 
ARPEGE System3 model. The SIM suite is composed of two main modules ISBA (a soil-
vegetation-atmosphere transfer scheme) and MODCOU (a hydrogeological routing module). 
River discharges are calculated over around 900 stations and soil moisture is calculated for 
around 10 000 meshes over France. Soil moisture is described by the Soil Wetness Index 
(SWI) averaged over the soil depth: 

𝑆𝑆𝑆 =
𝑊 −𝑊𝑤𝑤𝑤𝑤

𝑊𝑓𝑓 −𝑊𝑤𝑤𝑤𝑤
 

with 𝑊 the soil water content, 𝑊𝑓𝑓 the water content at field capacity and 𝑊𝑤𝑤𝑤𝑤 the water 
content at the wilting point. 

Priority has been put on river flows for which scores have been calculated for the 900 
stations over France for an initialization in May. For SWIs, the feasibility has been evaluated 
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in Singla et al. 2012 and scores have been calculated for summer but with an initialization in 
April. SWI scores have not been calculated yet using an initialization in May.  

The period of interest is MJJASOND (initialization at 1st of May with forecasts up to the 30th 
of November i.e. 7 months) in order to prevent drought during summer and the scores have 
been calculated for the 29 years of the hindcast period (1979-2007). Scores presented in the 
following paragraphs have been calculated for the June-July-August quarter and for each 
month of this quarter but here, only the results for JJA are presented. 

3.8.2. Scores for Forecasted River Flows 

3.8.2.1. Predictability Scores 

3.8.2.1.1. Deterministic scores 

The first score is the correlation in time of forecasted river flows using Hydro-SF with respect 
to the river flows issued from the reference SIM reanalysis, at monthly time step from May to 
November and also for the 3-months period JJA (Figure 3.8.2). The correlation allows 
checking the association of the mean river flow variations in time with respect to the 
reference (time-mean over each month, and mean over ensemble forecast).  

 

Figure 3.8.2: Correlation map of river flows between Hydro-SF and the SIM reanalysis 
reference for summer (month of initialization: May). Scores are calculated over the 1979-
2007 period. 

In a general way, forecasted river flows are quite well correlated in time with the river flow 
reference and especially over the Seine basin (around Paris) thanks to the presence of an 
aquifer whose groundwater contributes for around 60-80 % to the river discharge, and also 
over the Alps and Pyrenees where the snow cover brings predictability.  
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3.8.2.1.2. Probabilistic scores 

The ROC score has been calculated for the lower tercile. It shows the performance of the 
model as its discrimination threshold is varying. Here it shows that the predictability of low 
river flows is very high for all the stations for this period (Figure 3.8.3). 

 

Figure 3.8.3: Map of Roc areas calculated for the lower tercile of river flows for summer 
(Month of initialization: May). Scores are calculated over the 1979-2007 period and SIM 
reanalysis is the reference. 

Brier scores have been also calculated showing more reserved results (not shown). The 
Brier score is used to quantify the ability of an ensemble forecast to predict an exceedance 
(or non-exceedance) of a threshold.  

3.8.2.2. Skill Scores 
Skill scores are based on the comparison between river flows forecasted by the Hydro-SF 
suite (SIM is forced by ARPEGE S3 forecasts) and those using quite the same suite, except 
that random atmospheric forcings replace seasonal forecasts. These atmospheric forcings 
are randomly taken among the 29 years of the hindcast. Hereafter the first experiment is 
called Hydro-SF and the second is called RAF for Random Atmospheric Forcings. The RAF 
experiment is considered as being similar to climatological forecasts. The comparison of the 
two experiments highlights the skill of the forecasting suite and allows evaluating if there is 
an added value when using seasonal forecasts or not.  

As for the previous scores, only results for the lower tercile are shown.  

3.8.2.2.1. Deterministic skill scores 

In order to make comparisons between the seasonal hydrological forecasting suite (Hydro-
SF) and the random atmospheric forcing experiment (RAF), a bootstrapping method was 
used with a Student test on the difference of time correlations (Figure 3.8.4). It shows that 
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river flows issued from the Hydro-SF suite are a little bit better correlated in time than those 
issued from the RAF experiment (in yellow).  

 

Figure 3.8.4: Map of Student variable of the difference of correlation between Hydro-SF and 
the RAF experiment for the lower tercile of river flows, for summer. 

3.8.2.2.2. Probabilistic skill scores 

For the Brier Skill Score (BSS, Figure 3.8.5), the results are not so clearly in favour of the 
Hydro-SF experiment since it exists some areas and, especially a part of the Seine basin, 
where the RAF experiment is more skilful (in blue) than the Hydro-SF. It could be partially 
explained by the contribution of the aquifer which is modelled in both experiments. To 
investigate the differences between the two experiments for this score, a more in depth 
investigation should be done in particular by analysing the contribution of the three terms of 
the Brier score (reliability, resolution, uncertainty). 
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Figure 3.8.5: Map of Student variable of Brier Skill Score for river flows between Hydro-SF 
and the RAF experiment for the lower tercile, for summer.  

For the ROC score (Figure 3.8.6), the method consisting of using a bootstrapping with a 
Student test is a bit more complex. To assess the skill of the Hydro-SF experiment, we 
compare results obtained for ROC areas in both cases. Where ROC areas are between 
0.475 and 0.640 (yellow) in the RAF experiment, ROC areas are above 0.640 (orange-red) 
in the Hydro-SF experiment. For these regions, Hydro-SF is more skilful and brings more 
information than using a climatological forecast. But, for the other regions, the added value 
of Hydro-SF is not obvious and using seasonal or climatological forecasts seems to be 
equivalent. 
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Figure 3.8.6: Map of Roc areas calculated for the lower tercile of river flows, for summer 
(Month of initialization: May) for the Hydro-SF experiment (left) and for the RAF experiment 
(right).  

Key Points: River Flow 

- Temporally and spatially integrated quantities such as river flow tend to exhibit 
more skill on seasonal time scales. 

- Enhanced skill in river flow is due to the predictability in initial conditions of the 
hydrological model (e.g. soil moisture, snow) rather than predictability of 
meteorological input quantities such as rainfall. 

3.9. Drought in Romania 

3.9.1. Introduction 
In this study we used as a drought metric the Palmer Drought Severity Index (PDSI) and 
associated indices such as the soil moisture anomaly index. PDSI measures the cumulated 
effect of monthly precipitation deficit (surplus) with respect to the optimum precipitation 
amount, the latter being defined as the precipitation amount needed to maintain the optimum 
soil moisture in order to support a normal plant growth (i.e. without water stress) in a given 
region (Palmer, 1965). Summer months (JJA) are important from the standpoint of water 
availability for crops in Romania so we have focused on predictions for the June to August 
interval with forecasts initialized in April and May. 

3.9.2. Data and Methods 
Computation of the PDSI index requires data for precipitation, air temperature, general soil 
conditions (available water capacity) and solar radiation conditions (i.e. latitude of the 
specific location). In order to calculate PDSIi for a certain month i, one has first to determine 
the index of soil moisture anomaly ZINDi for that month: 
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 𝑍𝑍𝑍𝐷𝑖 = 𝑘 (𝑃 − 𝛼𝛼𝛼 − 𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾 + 𝛿𝛿𝛿) (1) 

 𝑃𝑃𝑃𝐼𝑖 = 𝑃𝑃𝑃𝐼𝑖−1 + 𝑍𝑍𝑍𝐷𝑖/3 − 0.103 𝑃𝑃𝑃𝐼𝑖−1 (2) 

 

where: k is an empirical weighting factor, specific for each region; α, β, γ, δ are coefficients 
for evapotranspiration, soil water recharge, runoff and water loss from the soil computed to 
link potential quantities and real ones; P, PE, PR, PRO, PL represent observed precipitation, 
Thornthwaite potential evapotranspiration (Thornthwaite, 1948), potential recharge, potential 
runoff and potential water loss from the soil. Potential Recharge is the amount of moisture 
required to bring the soil to its AWC from the available moisture at the beginning of the 
month. Runoff is assumed to occur if both surface and sub-surface layers of the Palmer soil 
model reach their combined moisture capacity, AWC. Potential Loss is the amount of 
moisture that could be lost from the soil provided the monthly precipitation is zero (Palmer, 
1965).  

Palmer (1965) built the index based on the components of the hydrological balance in a 
given area. Here we used the method and software developed by Wells at al. (2004) to 
compute self-calibrated PDSI values and related indices. The self-calibrated PDSI values 
numerically match the behaviour of the index at any location by replacing empirical 
constants of Palmer (1965) with newly calculated constants based on local climate. We 
computed PDSI and associated indices at 113 stations which cover Romanian territory for 
the interval 1961-2014. We used AWCs extracted from the European Soil Database (ESDB) 
for topsoil and subsoil (Hiederer, 2013a; Hiederer, 2013b). 

We have investigate drought-related predictability using 2 approaches: (1) hindcasts with a 
statistical model based on canonical correlation analysis (CCA) of the monthly zonal wind 
anomalies at 200 hPa over Eurasia in April and the monthly Palmer soil moisture index, 
temperature and precipitation in June, July and August for the interval 1961-2014; (2) 
hindcasts based on seasonal predictions of the Palmer soil moisture index, temperature and 
precipitation from the system 4 of ECMWF for June, July, August starting from April and May 
(2011-2014) (with 0, 1 and 2 months anticipation). For ECMWF skill evaluations, all summer 
predicted and observed monthly values are used in order to have a larger sample (i.e. data 
is not stratified on anticipation interval). 

3.9.3. Hindcasts Experiments with CCA Based Models 
We identified a predictive signal linking zonal wind anomalies at 200 hPa over Eurasia (from 
20 E to 120 E and from 30 N to 70 N) in April and the Palmer soil moisture anomaly index 
over Romania in June. This signal becomes weaker in July and August. We used the 
Climate Predictability Tool (http://iri.columbia.edu/our-expertise/climate/tools/cpt/) to build the 
statistical models, cross-validated their results and estimated the associated skills. 

The Romanian stations where the performance indices show highest skill for the Palmer soil 
moisture index have lower skill for temperature and precipitation (e.g. correlation coefficients 
between observed and predicted values, ROC scores; see Table 3.9.1 and Figure 3.9.1). 
This suggests the existence of an added value in predictability of the Palmer index which 
incorporates temperature, precipitation but also a soil-related constant (the available water 
capacity - AWC). 
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Table 3.9.1: Correlation of the statistical model for the prediction of temperature, 
precipitation and Palmer soil moisture index (ZIND) in June from zonal wind at 200 hPa over 
Eurasia in April along with the ROC score for ZIND. 

Station Correlation Coefficient ROC of ZIND 
Temperature Precipitation ZIND Above Below 

ARAD -0.08 -0.10 0.26 0.55 0.71 
BUCHAREST -0.22 0.33 -0.20 0.51 0.37 
CALARASI -0.20 0.26 0.07 0.55 0.58 
CRAIOVA -0.20 -0.13 0.14 0.64 0.59 
GALATI -0.23 0.03 0.04 0.44 0.48 
GIURGIU -0.29 0.19 0.18 0.59 0.53 
ROSIORI -0.24 0.13 0.12 0.55 0.62 
TIMISOARA -0.13 -0.43 0.20 0.69 0.61 
TURNU MAGURELE -0.28 -0.15 0.31 0.65 0.76 
URZICENI -0.28 -0.33 -0.07 0.44 0.46 

3.9.4. Hindcast Experiments Based on ECMWF Seasonal Predictions 
(System 4) 

We extracted the predicted monthly anomalies of temperature and precipitation and 
expressed them in percent using as the reference the climate hindcast (1981-2010) of 
System 4. We interpolated predicted anomalies for summer months at the locations of 9 
stations covering low areas in Romania. We added these anomalies to the observed 
climatologies (1981-2010) and we computed the predicted PDSI and associated indices (e.g. 
soil anomaly index) for June, July, August starting from the spring months April and May. As 
skill metrics we used correlation coefficients between predicted and observed values of 
PDSI and Palmer soil moisture index (ZIND). 
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Figure 3.9.1: Correlation coefficients between observed and predicted values of temperature 
(upper panel), precipitation (middle panel) and soil moisture anomaly index of Palmer 
(bottom panel). 
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PDSI indices of summer months (JJA) computed from ECMWF predicted temperature and 
precipitation starting from April and May have generally better skill than ZIND (see Table 
3.9.2). Correlation coefficients between ECMWF-predicted and observation-based PDSI, 
temperature and precipitation suggest to some extent the existence of an added value in 
predictability for the Palmer drought severity index which is not the case for ZIND. The 
higher predictability of PDSI compared with ZIND when using ECMWF predictions could be 
due to higher persistence of the PDSI and better skill of ECMWF model for June. Please 
note, however, that the correlation is based on four summers of forecasts only and the 
resulting coefficients are therefore subject to considerable sampling uncertainty. Figure 3.9.2 
and Figure 3.9.3 show best predicted evolutions of summer PDSI at locations in Southern 
and Western Romanian plains.  

Table 3.9.2: Correlation coefficients of the prediction of PDSI and Palmer soil moisture index 
in summer (JJA) from ECMWF predicted temperature and precipitation starting from April at 
9 Romanian stations. Predicted values from System 4 are used. 

 Station 
  

Correlation coefficient 
ZIND PDSI 

ARAD -0.61 0.81 
BUCHAREST 0.14 0.41 
CRAIOVA -0.07 0.40 
GALATI -0.19 1.00 
GIURGIU 0.03 0.00 
ROSIORI 0.34 0.51 
TIMISOARA -0.55 0.80 
TURNU MAGURELE 0.33 0.80 
URZICENI 0.34 0.73 

 

 

Figure 3.9.2: Temporal evolutions of observed-based and ECMWF-predicted values of PDSI 
in summer months (JJA) starting from May at 2 stations located in Western Romania. 
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Figure 3.9.3: Temporal evolutions of based and ECMWF-predicted values of PDSI in 
summer months (JJA) starting from May at 2 stations located in Southern Romania. 

3.9.5. Conclusions 
We identified a predictive signal linking zonal wind anomalies at 200 hPa over Eurasia (from 
20 E to 120 E and from 30 N to 70 N) in April and the Palmer soil moisture anomaly index 
(ZIND) over Romania in June. The Romanian stations where the performance indices show 
highest skill for the ZIND have lower skills for temperature and precipitation (e.g. correlation 
coefficients between observed and predicted values in Table 3.9.1; see also Figure 3.9.1). 
This fact suggests the existence of an added value in predictability of the Palmer index 
which incorporates temperature, precipitation but also a soil-related constant (the available 
water capacity - AWC). 

PDSI indices of summer months (JJA) computed from ECMWF predicted temperature and 
precipitation starting from April and May have generally better skill than ZIND. Correlation 
coefficients between ECMWF-predicted and observation-based PDSI, temperature and 
precipitation suggest to some extent the existence of added value in predictability for the 
Palmer drought severity index which is not the case for ZIND. The higher predictability of 
PDSI compared with ZIND when using ECMWF predictions could be due to higher 
persistence of the PDSI. However, these are preliminary conclusions which will be further 
substantiated for more stations covering Romanian territory. 

Key Points: Drought in Romania 

- Statistical seasonal forecasts suggest an added value of forecasts of the 
Palmer drought severity index over forecasts of temperature and precipitation 
respectively. 

- Also, predictability of the Palmer drought severity index seems to be enhanced 
compared with predictability of the soil moisture anomaly index. 
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3.10. Tropical Drought 

3.10.1. Definition and Equation 
The Water Requirement Satisfaction Index (WRSI) measures crop performance based on 
the balance between water supply and demand during the growing season. Usually, the 
computation of the water balance is updated with a frequency of ten days. During each ten-
day period, the WRSI is computed as the ratio between evapotranspiration and the water 
requirement of the crop. 

By considering AET (Actual Evapotranspiration) – a function of water availability in the soil - 
and WR (Water Requirement) – a function of atmospheric conditions and plant growth 
phases, WRSI is determined by the following relation: 

𝑊𝑊𝑊𝐼𝑖 = 100 ∙ 𝐴𝐴𝑇𝑖 / 𝑊𝑊𝑖 

The underlying conceptual scheme is that of a bucket which is replenished by rainfall and 
depleted by evapotranspiration. A critical step in the computation of WRSI is in the update of 
the soil water content. If during a given ten-day period the sum of soil water content plus the 
cumulated rainfall is less than the plant water requirement, then a water deficit is recorded. 
In more specific terms, if AET is less than the WR determined by atmospheric conditions and 
by the plant’s growing phase, the plant suffers a determined level of water stress. 
Conversely, if the sum of soil water content plus the cumulated rainfall exceeds the plant 
water requirement there is no water deficit  

The WR can be calculated by adjusting the “Potential evapotranspiration” by the specific 
characteristics of the plant at a given growing phase. It is computed as follows: 

𝑊𝑊𝑖 = 𝑃𝑃𝑇𝑖 / 𝐾𝑐𝑖 

where i indicates the ten-day period, PET is the Potential evapotranspiration during the 
considered period and Kc is a crop coefficient, which depends not only on the crop in object 
but also on the particular growing phase of such crop.  

PET (also known as “ETo” in FAO terminology) can be defined as the evapotranspiration 
rate from a reference surface (a hypothetical grass reference crop with specific 
characteristics), not short of water, and is a function of local weather parameters, such as 
solar radiation, air temperature, wind speed, and humidity. As PET depends mainly on solar 
radiation, which is fundamentally an astronomical parameter, climatological tables for this 
parameter are usually considered as representative of the actual value. 

The WRSI data considered in the present analysis have been computed by using the LEAP 
software available here http://hoefsloot.com/new/?software=leap-development 

The objective of the analysis presented in the following sections is to determine whether the 
aggregated drought index adopted for this study case, shows similar, better, or worse 
predictability than the raw physical variable (rainfall) which is adopted as an input to compute 
the index. 

The results are illustrated here by evaluating the skill of the forecasts against a reference 
WRSI dataset, which is derived by using the ARC2 satellite rainfall estimate as an input to 
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compute the drought index, which is to date the most widely adopted as an input to the 
LEAP platform. 

3.10.2. Anomaly Correlation 
To compare the skill in predicting WRSI with the skill in predicting the corresponding rainfall 
input, we consider the summer (JJAS) cumulated rainfall as a reference simplified indicator. 
Figure 3.10.1 shows the anomaly correlation of the ensemble average with the observed 
rainfall and WRSI. 

Note that WRSI (right panel) is computed only on a limited subdomain, which covers only the 
crop area of interest for the main crop season in Ethiopia. The south eastern part of the 
country is usually too dry to sustain agriculture; therefore WRSI is of no practical relevance. 
The same applies to the western part of the country, where the annual rainfall largely 
exceeds the requirements for rain-fed agriculture. 

In the left panel, rainfall data are aggregated to the coarser resolution of the global forecasts. 
Instead, for WRSI (left panel) the native resolution of the computation performed in LEAP is 
retained. 

Figure 3.10.1 shows that a positive correlation skill is concentrated mostly in the north of the 
country. In particular, WRSI has a high correlation (corr > 0.5) in areas where the cumulated 
rainfall shows no significant skill. This result is already an interesting indication that the 
aggregated drought index (WRSI) increases the predictability with respect to the 
corresponding rainfall values. Indeed, by construction, the WRSI focuses on capturing 
negative deviations from the normal precipitation regimes. Therefore, discrepancies in 
capturing wet events do not contribute to the overall skill. 

 

Figure 3.10.1: Ensemble mean, anomaly correlation for (a) JJAS cumulated rainfall and (b) 
WRSI. The reference observational rainfall data is ARC2. 

3.10.3. BSS 
In Figure 3.10.2 a similar comparison as in the previous section is presented for the Brier 
Skill Score. Similarly to the case of anomaly correlation, the BSS for WRSI shows a positive 
skill in the north of the country in areas where the raw cumulated rainfall has much lower 
skill. 

a) b) 
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Figure 3.10.2: Brier Skill Score for the lower tercile for (a) JJAS cumulated rainfall and (b) 
WRSI. The reference observational rainfall data is ARC2. 

Key Points: Tropical Drought 

- The comparison of skill of forecasts of rainfall and the water requirement 
satisfaction index provide indication that skill in the index exceeds the skill in the 
underlying variable in some areas. 

- In contrast to mean rainfall, the aggregated drought index is sensitive to 
episodes of water deficit (i.e. below normal rainfall) only. 

3.11. Fire Danger 

Wildfires represent the most important natural hazard in the EU-Mediterranean region, 
where an average of 4,500 km2 of forested and shrubland areas burn every year (San 
Miguel Ayanz et al. 2013), causing economic and environmental damages and loss of life 
every year. Here, estimating fire risk a few months in advance is therefore an urgent 
requirement, allowing fire protection agencies a timely reaction and an adequate provision of 
human and material resources. However, to date studies addressing the seasonal 
predictability of fire danger are still relatively scarce in the literature, and almost all of them 
follow an empirical approach to the problem, by statistically linking antecedent climatic 
variables used as predictors with observed fire activity (e.g. Chu et al., 2002, Preisler and 
Westerling 2007, Chen et al., 2011). This approach has been successfully used in certain 
EU-Med environments (Turco et al., 2013, Gudmundsson et al., 2014) with promising 
results, although the calibration of such models is largely dependent on the domain selected. 
In addition, a few studies explore the use of GCM outputs to seasonally predict fire danger 
(Roads et al., 2005) or fire activity directly (number of fires and burned area, Marcos et al., 
2015). 

In this deliverable, we use hindcast data from the System4 seasonal hindcast of 15 
members to produce a forecast of the Canadian Forest Fire Weather Index System (FWI), a 
fire danger indicator widely used in Europe and worldwide. We analyse several aspects 
regarding the FWI forecast quality as compared to the reference observations using a 
number of standard forecast verification metrics. In addition, we address the effect of 

a) b) 
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Quantile mapping (QM) techniques on the resulting forecast, as well as some 
methodological issues regarding the application of statistical correction techniques (and in 
particular QM methods) to ensemble forecast data for the calculation of CIIs integrated by 
the combination of different input variables, such as FWI. In principle, there are two 
approaches to bias correct seasonal forecasts for use with climate information indices. On 
the one hand, bias correction can be performed directly on the CII (QMd hereafter, “d” 
stands for “direct”). On the other hand, bias correction can be performed on the model output 
variables before computing the CII (QMc, “c” stands for “components”). The latter may be 
necessary if the absolute quantity of the underlying variables is important for the 
computation of the CII, or if consistency across multiple CIIs derived from the same 
underlying variable(s) is required. This issue is analysed in the perfect-prog downscaling 
framework by Casanueva et al. (2014), but to date an analysis in a bias-correction 
framework for a seasonal forecasting application is lacking. As a result, in this deliverable we 
assess the effect of both types of approaches (QMd vs QMc) on the resulting FWI 
predictions. 

The objective of the contribution to this deliverable is to better understand the ability of 
seasonal forecasts of FWI to adequately predict the observed inter-annual variability over 
the Euro-Mediterranean region (EU-Med). To achieve this objective we have undertaken the 
following:  

• Generation of FWI forecast maps using the ECMWF’s System4 seasonal hindcast of 
15 members 

• Verification of the seasonal forecast skill of the fire danger index used 
• Assessment of two different approaches for the correction of FWI: 

o Direct approach: correction of the pre-calculated FWI (QMd hereafter) 
o Component approach: independent correction of the different components 

prior to FWI calculation (QMc hereafter) 
• Verification of the seasonal forecast skill of the underlying variables, in order to 

assess the possible additional value of the multi-variable index. 

3.11.1. Data and Methods 

3.11.1.1. Methods 
A number of fire danger indices are used globally and for specific regions, many of these 
derived empirically based on observed fire danger and severe weather incidence in 
particular locations. One of the most frequently used, and most widely studied indices is the 
Canadian Fire Weather Index (FWI hereafter), also used extensively across Europe. This 
deliverable focuses on the skill of seasonal forecast of this particular index; however it 
should be noted that different fire danger indices may display different levels of skill for 
different seasons and regions, and further work considering other indices would add 
significantly to our understanding of the potential utility of such indices in decision making. 

The Canadian Fire Weather Index System (van Wagner, 1987) has been found to model fire 
potential in a broad range of fuel types worldwide (Bedia et al., 2015) and is currently a 
worldwide reference for the estimation of fire danger (deGroot et al., 2006). It has also been 
successfully applied for fire activity prediction (e.g. Viegas et al., 1999, Bedia et al. 2014b), 
and also applied in the context of future fire danger estimation in EU-Med (Moriondo et al. 
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2006, Bedia et al. 2013, 2014a). As a result, FWI has been proposed as a relevant Climate 
Impact Indicator (CII) in the context of EUPORIAS WP22, in the category of forest fire 
danger. A detailed description of the index is provided in D22.1. FWI lacks a compact 
mathematical definition. However, the full code used for FWI calculation in this deliverable 
(in R language, R Core Team 2015) is available through this link1. The interested reader is 
also referred to the original document describing FWI calculation and the physical meaning 
of its different components (van Wagner 1987). 

 

Figure 3.11.1: FWI climatology for the fire season (JJAS) and the 30-year period 1981-2010 
according to the reference WFDEI dataset. 

3.11.1.2. Observations 
Climate data at an appropriate temporal resolution were obtained from the publicly available 
WATCH Forcing Dataset-ERA Interim (WFDEI, Weedon et al., 2011 and 2014), with a native 
spatial resolution of 0.5º and 3-hourly time resolution. As a proxy of noon local time, we used 
the time of maximum solar incoming radiation of the WFDEI dataset for each grid cell and 
day of the year. More details on this particular dataset and the time resolution of the input 
variables is included in D22.1. 

3.11.1.3. Seasonal Forecast Data 
The seasonal forecast data is given by the ECMWF System-4 (Molteni et al., 2011), a state-
of-the-art fully-coupled general circulation model that provides operational multi-variable 
seasonal predictions at 0.75º horizontal resolution. In this study, we consider the 30-year re-
forecast of the model (1981-2010) with a 15-member ensemble and 7-month lead-time for 
predictions. Molteni et al. (2011) describe in detail the S4 system and its performance. In 
particular, in this deliverable we analyse the lead-month 1 FWI predictions, having been 
earlier prediction horizons analysed in more detail (including a description of model drift 
effect) in D22.1. 

                                                

1  https://github.com/jbedia/fireDanger/blob/master/fwi.R 
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3.11.2. Bias Correction 
To correct for model errors that vary not only as a function of lead time but also across the 
distribution of model outputs, quantile-quantile mapping is an often used bias correction 
method. In a multivariate context, QM also allows for multivariable correction in a 
(reasonably) consistent manner (see e.g. Wilcke et al 2013), as it is the case for the 
correction of the different input variables involved in FWI calculation. Our implementation of 
QM fits the hindcast daily empirical cumulative distribution functions (ECDFs) to 
corresponding observed ECDFs from the reference grids (WFDEI). To avoid potential 
deleterious effects of QM on the spread of the ensemble, we correct each member 
according to the joint multimember distribution. 

To deal with the dependence of the bias correction on lead time and the seasonal cycle (i.e., 
model drift), we used a moving window to estimate the QM correction. For each day of year 
(1-365) in the calibration period, ECDFs are constructed using a moving window whose 
width (in days) depends on the user requirements (a summary of previous applications is 
shown in Table 1 of an internal EUPORIAS report by Bedia and Bhend, 2015). For instance, 
a window of 30 days results in 900 values for a 30-year period of calibration. The use of a 
moving window serves two different purposes: 

1. The climatic variability for each particular day of the year is better described. Thus, 
the correction takes into account varying error characteristics throughout the year. As 
a result, the window should be wide enough to ensure that climatic variability for each 
particular day is adequately represented to provide robust estimates. 

2. In the particular case of seasonal forecast model data, the use of a moving window 
can help to minimize the forecast time-dependent bias (model drift, analysed in 
D22.1 for the particular case of FWI). To this aim, the window needs to be sufficiently 
narrow to encompass periods for which drift can be safely neglected. 

In this deliverable we use a moving window of 31 days, as a compromise between the above 
mentioned points 1 and 2.  

3.11.3. Verification 
From the set of verification metrics agreed in the frame of WP22 for this deliverable, the 
continuous ranked probability skill score (CRPSS) has been discarded, as the main interest 
of forecasting FWI focuses on the upper tail of the distribution (years of high fire danger), 
while the performance of forecast on lower parts of the distribution is of lower relevance. For 
this reason, ROCSS has been computed for the upper tercile as a more convenient metric to 
assess forecast skill in this context. Furthermore, the anomaly correlation coefficient (ACC) 
has been also considered. All verification metrics have been computed using the 
easyVerification R package (Bhend 2015). Additional visualization plots have been used for 
the assessment of the skill over selected sub-areas on an inter-annual basis, in particular 
tercile plots (see e.g. Diez et al, 2011) and spread plots, the latter providing an overview of 
observed and forecasted series and the spread of the ensemble. For further details on the 
tercile plots, see the help of the R function ‘tercileValidation’ in the R package downscaleR 
(Santander Meteorology Group 2015). 

The presence of trends shared by both the observations and the model, particularly for 
temperature over extensive regions of the study area, warns against the use of raw data for 
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verification. Thus, we present all the verification metrics based on detrended data. As an 
example, in Figure 3.11. the effect of trends in the verification step is shown, in particular 
considering the ROCSS for the upper tercile of temperature. While the effect is not dramatic, 
local differences in certain regions are noteworthy. In particular, forecast skill as measured 
by ROCSS is reduced with detrending for example in southern France, Switzerland and 
northern Italy. This suggests that there is limited predictability of inter-annual variability in 
these regions. In Hungary, on the other hand, detrending leads to an increase in skill. This in 
turn may be due to a misrepresentation of trends in the seasonal forecasts. 

 

Figure 3.11.2: ROC Skill Score Maps for the upper tercile of temperature after QM correction 
considering: (a) raw, undetrended data and (b) detrended data. Circles indicate significant 
ROCSS values (95% c.i.). 

Significantly positive ROCSS values were obtained in the eastern and north-eastern corner 
of the domain (Greece and Bulgaria mainly) for the upper tercile of FWI (Figure 3.11.3). 
Please note that we show only upper tercile forecast skill (i.e. the above-normal fire danger 
years). Upper tercile FWI forecasts are the most relevant from the end user standpoint, as 
these encompass the most dangerous situations in terms of fire ignition and spread, the 
remaining terciles being less relevant for fire prevention. Equivalently, in the case of relative 
humidity we will focus on the lower tercile, linked to high FWI situations (see e.g. Fig. 2 in 
Bedia et al 2012). 
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Figure 3.11.3: ROC skill score of the (a) QMc and (b) QMd FWI forecast (detrended), for the 
upper tercile. The green box depicted in panel (b) is used as a reference area for a more 
detailed analysis of model skill in section 3.9.3.1. Circles indicate significant ROCSS values 
(95% c.i.). 

The comparison of Figure 3.11.3b (detrended QMd FWI) and Figure 3.11.b (detrended QM 
temperature) and Figure 3.11.4 (detrended QM relative humidity) suggests that there is not 
much gain in forecast skill of FWI as compared to that of its input variables, and that most of 
the skill attained by FWI can be attributable to the additive effect of the skills of relative 
humidity and temperature. Neither wind, nor precipitation shows a significant skill in the 
study area in terms of ROCSS2 (not shown).  

While the results of both forms of FWI correction (QMd and QMc) had no significant effect on 
the validation results (Figure 3.11.3), further analyses may be needed to more thoroughly 
assess the implications of both approaches in the preservation of trends, and other aspects 
potentially affecting the verification and the applicability of the forecasted variables. 
According to our results, QMd may represent a preferred approach given its relative 
simplicity as compared to QMc, requiring the application of the correction just once. Thus, 
the results presented hereafter correspond to the QMd approach. 

                                                

2 For instance, a preliminary report on the validation of precipitation for System4 seasonal 15 
members with further verification metrics plus reliability diagrams is available through this link: 
http://meteo.unican.es/trac/attachment/wiki/udg/ecoms/dataserver/datasets/validation_report_System
4_15members_precip.pdf 
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Figure 3.11.4: Same as Figure 3.11.b, but for the lower tercile of relative humidity. 

Additional skill measures are presented in the following, which in general corroborate that 
the only region where seasonal forecast may prove useful for anticipating fire-season FWI 
one month in advance is the eastern part of the study area. In particular, It has been shown 
empirically that ACC values around 0.6 correspond to the range up to which there is synoptic 
skill for the largest scale weather patterns (ECMWF 2015 ), which are found in certain areas 
of Greece (Peloponnese), Turkey, Bulgaria and NE corner of the study area (Figure 3.11.5).  

 

Figure 3.11.5: ACC of QMd detrended forecast FWI against the observed reference. 

3.11.4. Regions with Skill 
In this subsection we focus on the region within the whole domain that has exhibited some 
degree of skill (its spatial boundaries are depicted by the green box in Figure 3.11.3b). Even 
though this is not very high, as said before it may prove useful within an operational 
framework. Interestingly, the eastern part of the Euro-Mediterranean region has been 
identified as particularly sensitive to fire-weather interannual variability in terms of burned 
area (Bedia et al 2015), stressing the potential usefulness of this source of skill. In particular, 
we show a tercile plot depicting the observed interannual variability of FWI related to the 
forecast predictions for each particular year (Figure 3.11.6) where the performance of the 
prediction system can be visually inspected. It can be seen that 8 out of 10 of the years 
falling in the upper tercile of FWI (indicated by the white circles) were predicted by the model 
with the highest probability (i.e., the fraction of ensemble members falling in that category 
was the largest as indicated by the colour bar). 
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Figure 3.11.6: Tercile validation plot. Data represented correspond to the spatial mean of the 
box indicated in Figure 3.11.3b (10 grid boxes), an area where some skill has been found. 

Correspondingly, Figure 3.11.7 shows the multimodel spread (the IQ range is represented) 
and the interannual evolution of the observed and predicted mean FWI for the fire season. 
The tercile boundaries are also indicated by the horizontal dashed lines. 

 

Figure 3.11.7: Observations (red dashed line) and ensemble mean (grey solid line) and 
spread (interquartile range, grey shadow). Data represented correspond to the spatial mean 
of the box indicated in Figure 3.11.3b (10 grid boxes), an area where some skill has been 
found. The blue dashed horizontal lines indicate the FWI terciles. 

3.11.5. Conclusions 
In light of the results presented, the main conclusions regarding seasonal forecasts of fire 
weather in southern Europe are as follows: 

1. Both long-term trends and inter-annual variability may be predictable to some extent. 
Here, our aim is to study skill in predicting the latter. Hence we advocate to 
systematically remove trends present in the data to obtain more reliable estimates of 
skill in predicting inter-annual variability.  
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2. No significant effect of both QM approaches was found for FWI forecast skill. As a 
result, we opted for the use of QMd as a more convenient and computationally less 
demanding approach. However, changes in the predicted trends may be altered by 
QMc (not shown), which will be subject of further research. 

3. The forecast skill for above average FWI across the region as a whole was not 
improved in comparison to the forecast skill of the underlying variables (this was 
tested on temperature and relative humidity only, by looking at their respective 
ROCSS). However further analysis is needed to comment on the skill in individual 
locations and with other input variables that may prove skilful in other world areas 
(e.g. precipitation). 

4. In general, the forecast skill was poor in the domain of analysis. However, the 
eastern and south-eastern areas of analysis exhibited some degree of skill, 
suggesting the potential usefulness of System4 forecasts of FWI in this region for 
early warning of particularly dangerous fire seasons. These forecasts may be 
improved through the application of statistical downscaling techniques where local 
historical weather records of sufficient quality are available. 

Key Points: Fire Weather 

- There is significant skill in predicting summer fire weather in south-eastern 
Europe, elsewhere forecast skill for fire weather is poor. 

- Skill in forecasting fire weather seems to be insensitive to the choice of 
approach for bias correction applied (i.e. correcting daily inputs vs. correcting 
the index). 

3.12. Temperature Related Mortality 

For the health case study, the performance of a climate-driven mortality model to provide 
probabilistic mortality predictions for heat wave and cold spell scenarios was assessed. The 
skill of the mortality forecasts using (a) ensemble forecasts of daily apparent temperature 
and (b) reanalysis daily apparent temperature, as inputs to the mortality model, was 
compared.  

3.12.1. Definition and Equation 
Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe 
were obtained from 1998–2003. Data were aggregated to 54 larger regions in Europe, 
defined according to similarities in population structure and climate. Location-specific 
average mortality rates, at given temperature intervals over the time period, were modelled 
to account for the increased mortality observed during both high and low temperature 
extremes and differing comfort temperatures between regions. The temperature–mortality 
dependency for each aggregation was estimated as follows: The range of observed 
temperatures was divided in equally spaced intervals. Days belonging to each interval were 
grouped and daily temperature and mortality data within each interval were averaged. 
Interval mean mortality was smoothed by means of a centred 31-term filter, corresponding to 
nearly 3°C intervals. The lowest value defines the interval of comfort temperature. This 
threshold divides the range of temperatures into 'warm' and 'cold' tails (see Ballester et al., 
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2011 for further details). The model used to fit the temperature-mortality curves was 
formulated as follows: 

𝑦𝑖𝑖 ∼ 𝑁�𝛼𝑗 + 𝛽1𝑗𝑥𝑖𝑖 + 𝛽2𝑗𝑥2𝑖𝑖 + 𝛽3𝑗𝑥3𝑖𝑖 ,𝜎𝑗2�, 

where 𝑦𝑖𝑖 is the logarithm of the average mortality rate (per million population) at region, 𝑖 
and temperature interval, 𝑘. Then, for each region 𝑖, the log mortality rate was formulated as 
a non-linear function of temperature, 𝑥𝑖𝑖, (a third order polynomial), with location specific 
intercept, αj. Note that parameters are fitted separately for the warm tail ( 𝑗 = 𝑤 ) and cold 
tail ( 𝑗 = 𝑐 ), depending on whether the temperature is greater than ( 𝑥𝑖𝑖  ≥  𝑥𝑖𝑖 ) or less than 
( 𝑥𝑖𝑖  <  𝑥𝑖𝑖 ) the comfort temperature (i.e., the temperature of minimum mortality), 𝑥𝑖𝑖. The 
models are fitted in a Bayesian probabilistic framework (Lowe et al., 2015). Figure 3.12.1 
shows the mean and 95% credible intervals (Bayesian equivalent of confidence intervals) 
obtained from the probabilistic simulations of the Bayesian probabilistic model, for each of 
the 54 regions. The region-specific comfort temperature, i.e. the temperature at minimum 
mortality, is indicated by a purple dot.  

 

Figure 3.12.1: Posterior predictive distributions (mean and 95% credible intervals) for cold 
tail (blue) and warm tail (pink) estimations for all 54 regions across Europe. The comfort 
temperature threshold for each region is marked with a purple dot. The mean mortality 
curves for two contrasting regions (South Portugal and Denmark) are magnified.  

In order to simulate mortality predictions for heat wave or cold spell scenarios, spatio-
temporal apparent temperature data, 𝑥𝑖𝑖 , where 𝑡 is the time step (daily), for heat wave and 
cold spell scenarios were combined with 1000 samples of the parameters estimated from the 
warm tail model ( 𝑗 = 𝑤 ) 

𝑦𝑖𝑖 ∼ 𝑁(𝛼𝑤 + 𝛽1𝑤𝑥𝑖𝑖 + 𝛽2𝑤𝑥2𝑖𝑖 + 𝛽3𝑤𝑥3𝑖𝑖,𝜎𝑤2), if xit ≥ xim 

and cold tail model ( 𝑗 = 𝑐 ) 

𝑦𝑖𝑖 ∼ 𝑁(𝛼𝑐 + 𝛽1𝑐𝑥𝑖𝑖 + 𝛽2𝑐𝑥2𝑖𝑖 + 𝛽3𝑐𝑥3𝑖𝑖,𝜎𝑐2), if xit <xim, respectively. 



 

EUPORIAS (308291) Deliverable 22.2 Page 82 
 

Apparent temperature, defined in the following equation, is the climatological input to the 
mortality model. 

𝑇𝑎𝑎𝑎 = −2.653 + 0.994 𝑇𝑎𝑎𝑎 + 0.0153 𝑇𝑑𝑑𝑑𝑑𝑑2  

Where 𝑇𝑎𝑎𝑎 is the apparent temperature and 𝑇𝑎𝑎𝑎 and 𝑇𝑑𝑑𝑑𝑑𝑑 the air and dew point 
temperatures at 2m, all in degrees Celsius.  

ECMWF System4 ensemble forecasts (hindcasts), with 15 ensemble members, were used. 
Forecasts with one month lead time for each season (DJF, MAM, JJA, and SON) were 
obtained from The ECOMS User Data Gateway. For this case study, the climate data needs 
to be combined with regionally aggregated mortality data. Thus, the System4 data has to be 
aggregated to the 54 regions, described above. For each region, the climate model data at 
grid points found inside the region are identified and averaged for each time step. In case 
the region is smaller than the grid squares, the value of the nearest neighbour grid to the 
centroid of the region is used. Therefore, 54 time series with a daily resolution, for each of 
the ensemble members and forecasts, are computed. Both series for 2m temperature and 
2m dew point temperature are generated, and then combined, following the above equation, 
to produce regional seasonal forecasts of apparent temperature.  

3.12.2. Bias Correction 
The regional apparent temperature forecasts were first bias-corrected before using them as 
an input to the mortality model. The bias correction methodology that we used is as follows. 
First, the apparent temperature forecasts are aligned in the forecast time and averaged over 
the run times and ensemble members, in order to compute a forecast-time dependent bias. 
Along with that, a daily climatology of the reference dataset (ERA-Interim) is computed and 
smoothed with a LOWESS filter following Mahlstein et al. (2015), using alpha=0.4. We 
inspected the performance of this correction by using quantile-quantile plots, and the results 
were very good, so it was decided that a more complex correction (such a quantile 
mapping), was not necessary in this case. Note that using regionally aggregated data 
reduces the noise and makes the correction more robust. 

Therefore, using the forecast apparent temperature data to run the mortality model, 1000 
samples of daily mortality rates were generated for each region, each day and each 
ensemble member (15,000 samples). For comparison, reanalysis apparent temperature 
(from ERA-Interim) was used to run the mortality model, producing 1000 samples of daily 
mortality rates for each region and each day. This allows an assessment of the improvement 
in skill when replacing forecast with observed climate data to run the mortality model. As a 
case study, daily mortality rate samples were averaged for two climatological events of 
interest: the heat wave period, 1-15 August 2003 and the cold spell period, 1-15 January 
2003, using both forecast and observed climate data as inputs to the mortality model. 
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3.12.3. Skill Scores and Significance 

3.12.3.1. Probability Forecast Maps 

 

Figure 3.12.2: Probabilistic map of exceeding emergency daily mortality threshold (75th 
percentile of daily mortality distribution in the warm tail) using (a) ensemble forecast 
(ECMWF System4) and (b) reanalysis (ERA-Interim) apparent temperature as input to the 
mortality model. (c) Corresponding observations during a heat wave scenario (1–15 Aug 
2003). The graduated colour bar represents the probability of exceeding the mortality 
threshold (ranging from 0%, pale colours, to 100%, deep colours).

 

Figure 3.12.3: Probabilistic map of exceeding emergency daily mortality threshold (75th 
percentile of daily mortality distribution in the cold tail) using (a) ensemble forecast (ECMWF 
System4) and (b) reanalysis (ERA-Interim) apparent temperature as input to the mortality 
model. (c) Corresponding observations during a cold wave scenario (1–15 Jan 2003). The 
graduated colour bar represents the probability of exceeding the mortality threshold (ranging 
from 0%, pale colours, to 100%, deep colours). 

Figure 3.12.2 shows the predicted probability of mortality rates exceeding the 75th percentile 
of the mortality distribution, given that temperatures are greater than the comfort 
temperature (i.e. the warm tail distribution) for the heat wave period 1–15 August 2003 using 
(a) forecast climate (forecast issues in May 2003) and (b) observed (reanalysis) climate. The 
latter is indicative of a mortality prediction given we had a perfect meteorological forecast 
(i.e. the observed apparent temperature).The corresponding observations (i.e. whether the 
mortality rate exceeded the threshold or not) are also displayed (Figure 3.12.2c). Figure 
3.12.3 shows the predicted probability of mortality rates exceeding the 75th percentile of the 
mortality distribution, given that temperatures are colder than the comfort temperature (i.e. 
the cold tail distribution) for the winter period 1–15 January 2003 using (a) forecast climate 

a) b) c) 

a) b) c) 
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(forecast issues in November 2002) and (b) observed (reanalysis) climate. The 
corresponding observations (i.e. whether the mortality rate exceeded the threshold or not) 
are also displayed (Figure 3.12.3c). 

3.12.3.2. ROC Score, Hit Rates and False Alarm Rates 
Table 3.12.1 shows an evaluation of the probabilistic predictions for the heat wave and cold 
spell scenarios, using (A) forecast and (B) observed climate as inputs to the mortality model. 
Probability decision thresholds of 70% and 30% were selected a priori. By using a probability 
decision “cut off”, the efficacy of the model for these specific scenarios was evaluated in a 
binary framework. To assess the correspondence between mortality predictions and 
observations, the proportion of correct predictions, and conditional probabilities, i.e. the hit 
rate and the false alarm rate were calculated. For this exercise, the ‘proportion correct’ is 
defined as the proportion of the 54 regions for which the model correctly anticipated that 
mortality rates would or would not exceed the emergency threshold. The ‘hit rate’ (sensitivity) 
is the proportion of regions that correctly predicted that the emergency threshold would be 
exceeded. Conversely, the false alarm rate (1-specificity) is the proportion of regions for 
which mortality rates was predicted to exceed the emergency threshold, but did not. The 
ROC score (equivalent to the area under the modelled ROC curve) characterises the quality 
of a forecast system by describing the system’s ability to anticipate correctly the occurrence 
or non-occurrence of pre-defined events. A ROC score value of 50% indicates zero skill 
while a value of 100% represents perfect skill. The results show that the mortality prediction 
using forecast climate data show no overall skill, with a ROC score for both scenarios less 
than 50%. However, when we use observed (reanalysis) apparent temperature data to drive 
the mortality model, the model shows considerable skill, with a ROC score of 97% for the 
heat wave scenario and 78% for the cold spell scenario. Please note that the latter 
represents an upper bound to forecast skill of pre-defined events given we had a perfect 
meteorological forecast (i.e. the observed apparent temperature). 

The results indicate that daily disaggregated seasonal climate forecasts, with lead times up 
to three months, are not sufficient to predict increased mortality for the heat wave and cold 
spell scenarios examined. Further work will be conducted to test the seasonal climate 
forecasts in the mortality model at coarser time resolutions (e.g. month, season) and using 
forecasts with shorter lead times. Due to the short time period of the mortality data (6 years), 
the skill assessment was performed across space for specific scenarios. The mortality 
database is currently being updated until 2010. Once this data is available (expected by next 
year) we will have an increased temporal coverage (15 years) to perform temporal skill 
analyses for specific seasons across Europe. 
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Table 3.12.1: Evaluation of heat waves and cold spell scenarios given pre-defined 
emergency and probability decision thresholds. Mortality model driven by (A) ensemble 
forecasts (ECMWF System4) of apparent temperature, with a three month lead for the heat 
wave scenario and a two month lead for the cold spell scenario, and (B) reanalysis (ERA-
Interim) apparent temperature. 

A       

Scenario Emergency threshold 
Defined for each region 
using daily data 1998–2003 

ROC 
score 

Probability 
decision 
threshold 

Hit 
Rate 

False 
Alarm 
Rate 

Proportion 
correct 

Heat wave 

1–15 Aug. 
2003 

75th percentile of mortality 
distribution given that 
temperature is warmer than 
the comfort temperature. 

27% 

70% 3% 5% 37% 

30% 12% 30% 33% 

Cold spell 

1–15 Jan. 
2003 

75th percentile of mortality 
distribution given that 
temperature is colder than 
the comfort temperature. 

25% 

70% 14% 30% 24% 

30% 80% 100% 65% 

 

B 

Scenario Emergency threshold 
Defined for each region 
using daily data 1998–2003 

ROC 
score 

Probability 
decision 
threshold 

Hit 
Rate 

False 
Alarm 
Rate 

Proportion 
correct 

Heat wave 

1–15 Aug. 
2003 

75th percentile of mortality 
distribution given that 
temperature is warmer than 
the comfort temperature. 

97% 

70% 85% 5% 89% 

30% 100% 55% 80% 

Cold spell 

1–15 Jan. 
2003 

75th percentile of mortality 
distribution given that 
temperature is colder than 
the comfort temperature. 

78% 

70% 66% 20% 69% 

30% 93% 40% 87% 

 

3.12.4. User Requirements 
Forecast data and projections for heat are primarily used by health systems within the 
decision-making framework of heat–health actions plans (HHAP). HHAPs rely on early-
warning systems for timely activation and to allow for longer-term resource planning. 

Heat–health action plans can be evaluated based on inclusion of nine core elements (Bittner 
et al., 2014, McGregor et al., 2015, Matthies et al., 2008). 
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1. Agreement on a lead body and clear definition of actors’ responsibilities 
2. Accurate and timely alert systems, heat–health watch-warning systems 
3. Health information plan  
4. Reduction in indoor heat exposure  
5. Particular care for vulnerable groups  
6. Preparedness of the health/social care system  
7. Long-term urban planning  
8. Real-time surveillance 
9. Monitoring and evaluation 

Of specific interest from the perspective of providing a climate service for heat is core 
element 2, followed by preparedness of the health/social care system (core element 6) and 
long-term urban planning (core element 7). These three core element components would 
have different relevant lead-times for forecasting: timely alert systems to trigger the 
activation of HHAPs are typically days in advance; for countries that have not experienced a 
severe heat or cold event for several years, an early warning a few months before the event 
could allow time to update action plans. Longer-term health system preparedness and better 
resource management would benefit from longer monthly-to-seasonal forecasts to allow for 
increase of capacity of health services, heat reduction in healthcare facilities and improving 
health-care networks. Urban planning for heat occurs on seasonal-to-decadal or longer 
timescales, and includes cross-sectoral issues such as increasing green and blue spaces, 
changes in building design, changes in land-use decisions, energy consumption reduction, 
and individual and public transport policies. 

Of the 18 countries of the WHO European Region with known heat–health action plans, with 
varying degree of geographical coverage and measures included, 16 had a clearly defined 
alert system and a health system preparedness component, all included an information plan, 
but only four included long-term urban planning within the HHAP itself. 

This illustrates a potential for longer forecast lead-times to be incorporated into already 
existing HHAP in the European Region, whilst the remaining countries could benefit from 
incorporating such available information at the design stage of new HHAP development. 
However, these preliminary results indicate that a compromise will have to be reached 
between user needs and the capabilities of seasonal climate forecasts over Europe, to 
provide skilful mortality predictions at different temporal resolutions.  

Key Points: Temperature-related Mortality 

- While episodes of heat and cold related mortality during heat waves and cold 
spells are predictable given an accurate meteorological forecast, forecast skill 
with lead times of up to three months is not sufficient to predict increased 
mortality for the two events studied. 

- When addressing impact models for health it may be relevant to consider more 
than one target forecast (namely, peak timing of excess mortality, maximum 
incidence at the peak, etc.…) to provide a more comprehensive picture. 
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Table 3.12.2: Assessment of 18 heat–health action plans in the WHO European Region. 
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Austria (regional) 2011       **   

Belgium 2005       **   

Croatia 2012          

France 2012       **   

Germany 
(regional) 

2004–
2008 

      **   

Hungary 2007          

Italy 2008          

Luxembourg 2006    **   **   

Moldova 2010          

Monaco 2012       **   

Netherlands 2007       **   

Portugal 2010       **   

Romania 2008          

Serbia 2012       **   

Spain 2012    **   **   

Switzerland 
(regional) 

2007       **   

the FYR 
Macedonia 

2010–
2011 

         

UK (regional) 2012          

** covered elsewhere other than in HHAP. Source: adapted from Bittner et al (2014). 
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4. Lessons Learnt 

Two distinct types of CIIs are identified. CIIs defined with respect to absolute thresholds 
such as frost days or heating degree days and CIIs defined with respect to relative 
thresholds such as the percentage of time with wind above the 90th percentile. CIIs based on 
relative thresholds are beneficial in that they are less prone to systematic model biases. 
Often, however, user communities have traditionally used CIIs based on absolute thresholds 
reflective of identified system thresholds in the real world. To derive forecasts of CIIs of the 
latter type, systematic errors of the seasonal forecasting systems need to be corrected 
before computing such indices. While such bias correction is important, skill of CII forecasts 
generally seems to be independent of the choice of bias correction method suggesting that 
simple de-biasing methods are sufficient. In some cases (e.g. frost days), however, 
enhanced skill with more sophisticated bias correction methods (e.g. quantile mapping) is 
found.  

The forecast time horizon of long-range forecasts is too long to forecast daily or weekly 
events deterministically. To account for the inherent uncertainty of such long-range 
forecasts, these are therefore framed probabilistically. This implies that climate indices (and 
impact models) have to be computed using all available ensemble members rather than the 
ensemble mean to be able to represent this uncertainty. The probabilistic framing also 
implies that calibration methods should be applied in a manner that allows the uncertainty 
information contained in the ensemble of forecasts to be retained in the bias corrected 
forecasts. Future research may also focus on incorporating medium-range forecast 
information to exploit the reduced uncertainty and enhanced forecast skill at shorter lead 
times.  

Seasonal forecast skill varies by climate index or variable, region, season, forecast lead 
time, and spatio-temporal aggregation. In general, skill of seasonal forecasts is limited in 
Europe with higher skill during summer than during winter and higher skill for indices related 
to temperature than for indices related to precipitation. For CIIs derived from a single 
meteorological quantity (e.g. frost days), forecasts of CIIs are generally at most as skilful as 
the forecasts of the underlying variable. Even if skill in forecasts of CIIs is not enhanced 
compared with the underlying meteorological variables, CII forecasts are potentially more 
relevant and useful to the users as these allow framing the seasonal forecast in a more 
application-specific way. 

Enhanced skill is found for impact variables such as the water requirement satisfaction index 
or river discharge. Enhanced skill of the latter is due to a combination of the spatio-temporal 
integration and the additional predictability from initial conditions with long-term memory (e.g. 
soil moisture and snow in the catchment area). Temporal aggregation has been found to be 
beneficial in that scores for 3-month periods are generally better than scores for individual 
months. For some applications, however, information at the monthly time scale may be more 
useful than seasonally integrated forecasts.  

To better understand predictability on seasonal time scales in Europe, the sources of skill 
should be investigated. Trends due to external forcings are such a source of skill. When 
assessing a forecast, it is therefore important to distinguish if skill is due to trends or based 
on the ability of the forecast system to predict interannual variability. Preliminary analysis 
suggests that long-term trends are an important source of predictability in winter, whereas 
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predictability in summer seems to be mostly independent of long-term trends. Also, some 
bias correction methods (e.g. quantile mapping) can affect the representation of trends and 
thereby forecast skill. The effect of the choice of calibration method on trends and thereby 
predictability, however, needs further investigation and will be a focus of deliverable D22.3.  

5. Links Built 

5.1. Links to Other Deliverables, WPs, and Prototypes in EUPORIAS 

Wind speed assessments are highly relevant to the RESILIENCE prototype development in 
WP42, and to the feedback received by end users from WP12. There is also a close link to 
Vortex, the wind energy partner involved in this WP. The collaboration with Vortex resulted in 
the organization of a workshop with energy sector stakeholders interested in S2D predictions 
or potential candidates to use this information in their current activities. The main output of 
the workshop was the analysis provided by the participants on the S2D climate predictions 
and its potential impact in their daily activities. It was highlighted that there is a low visibility 
and demand for probabilistic climate forecasts but all participants agreed in their interest in 
this type of products. The main recommendation was to facilitate the experimental usage by 
advanced users in the sector and make publicly available test cases to provide examples of 
real world usage. 

As part of EUPORIAS, MeteoFrance has collaborated with Laurent Dubus (EDF, EUPORIAS 
partner) concerning the comparison of two hydrological models. Also, MeteoFrance has 
collaborated with WP23 on impact models for impact predictions for the water sector and 
with WP33 on how to visualize forecasts of CIIs. 

The technical findings from work on the Fire Weather Index within this work package have 
been developed further into a case study considering in a more holistic sense the value of 
the CII to a range of decision makers in Europe. Drawing on findings from surveys and 
interviews conducted as part of WP12, and following the methods developed there through 
our own online user survey, we gained a much deeper understanding of the potential use of 
fire indices by decision makers in the forestry, land management, insurance and civil 
protection sectors. We also considered the current barriers to the use of CIIs and where the 
value of developing new seasonal forecasts of the fire index would be greatest. Combined 
with the technical evaluation carried out in this work package and the remaining work under 
this work package we hope to build a more robust understanding (for both providers and 
users of the information) of where we can add value to the decision making process through 
use of CIIs. 

The Climate Dynamics and Impacts Unit (UDIC) of IC3 have been liaising with WP33 to help 
define skill score thresholds, to translate levels of skill into user-friendly categories for 
stakeholders.  

In WP21 the added value of downscaling for provision of CII forecasts will be assessed, a 
task that will build on the expertise gained in this WP and will use methods and tools 
developed as part of its deliverables. 
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5.2. Technical Collaborations 

In collaboration with WP21 and building on software developed as part of the FP7 project 
SPECS, a set of software tools for verification of seasonal forecasts has been developed 
(https://www.github.com/meteoswiss/easyverification). Access of seasonal forecast data 
using tools developed as part of WP21 and its verification using the above software has 
been documented (Bedia and Bhend, 2015). The software is freely available and it is used in 
a number of analyses performed in the FP7 projects EUPORIAS and SPECS.  

In addition, KNMI, together with MeteoSwiss, is working on the extension of the R package 
climdex.pcic to include in the calculation routines a wide selection of indices. A technical 
report on the newly added indices is expected by December 2015. The extended version will 
be used as a validation procedure in the CLIPC project (WP6) to validate the python library 
ICCLIM, developed within CLIPC for the calculation of indices. 

5.3. External Links 

The Climate Forecasting Unit (CFU) of IC3 is involved in a number of international projects 
and a national project called RESILIENCE aligned with the objectives of the EUPORIAS 
project either because their aim is to improve seasonal-to-decadal (S2D) predictions or 
because they are centred in the energy sector needs on climate services. The team is a 
partner in the PREFACE European project and in two European projects within the Horizon 
2020 programme: PRIMAVERA and IMPREX. PREFACE aims to improve the understanding 
and capabilities to predict tropical Atlantic climate and its impacts; PRIMAVERA aims to 
deliver novel, advanced and well-evaluated high-resolution global climate models tailored to 
and actionable for sector-specific end-users such as the energy sector; and IMPREX aims to 
improve the prediction and management of meteorological and hydrological extremes which 
might have an impact on energy facilities, energy production and management. IC3 also 
participates in an ERA-NET project called NEWA for the preparation of the New European 
Wind Atlas that will include seasonal and sub-seasonal wind predictions. 

IC3-CFU has also collaborated in the CLIM4ENERGY proposal that aims at responding to 
the Copernicus Climate Change Service (C3S) objectives, by demonstrating the added value 
of tailored climate information for the transitioning European energy sector. IC3-CFU (under 
its new name as Barcelona Supercomputing Centre) together with MeteoSwiss collaborated 
in the Copernicus C3S proposal QA4Seas on the evaluation and quality control for seasonal 
forecasting systems available through the Copernicus C3S. 

Lessons learned from this work package have fed into design and post-processing of sub-
seasonal to seasonal forecasts at MeteoSwiss, the Swiss national weather service. Also, 
findings from WP22 feed into the Project HEPS4Power (Extended-range 
Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and 
Revenues), funded by the Swiss Science Foundation through the Swiss Competence Centre 
for Energy Research. As part of this project, stakeholder interaction with exponents from the 
energy sector will be intensified. In turn, insights on presentation formats of long-range 
forecasts gained through stakeholder interaction and public dissemination of such forecasts 
have been made available in EUPORIAS. 
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Also, MeteoSwiss will collaborate with FU Berlin and MPI Hamburg as part of MiKlip II - 
Module E “Evaluation of the MiKlip Decadal Prediction System”. Thereby insights on the 
calibration and recalibration of seasonal forecasting systems developed as part of this work 
package will feed into the development of the German decadal prediction system MiKlip.  

The Climate Dynamics and Impacts Unit of IC3 (IC3-UDIC) is involved in a number of 
international projects, consortium, outreach, and user-engagement activities. In collaboration 
with the FP7 projects DENFREE and SPECS, IC3-UDIC led the development of a prototype 
climate service for health by issuing a dengue early warning forecast, driven by seasonal 
climate forecasts, three months ahead of the 2014 World Cup in Brazil. Dengue early 
warning predictions were disseminated widely, for example as part of  the European Centre 
for Disease Control (ECDC) health risk assessment, reported by the UK National Health 
Service (NHS) and published by more than 18 international press outlets, including the BBC. 
The operational use of seasonal climate forecasts in routine dengue early warnings is now a 
priority for the Brazilian Climate and Health Observatory, in collaboration with the Brazilian 
Space Agency (INPE). 

IC3-UDIC is collaborating with the developers of the UrbClim model in the framework of the 
NACLIM project to represent the Urban Heat Island effect on health impacts. This 
collaboration has led to the preparation of a Copernicus Climate Change Services (CS3) 
tender proposal regarding a Multi-Sectoral Information System for Urban Areas (UrbanSIS). 
IC3 has also collaborated in Copernicus Climate Change Services (CS3) tender proposal 
(SECTEUR) that aims to identify user requirements and gaps related to the use of climate 
information to support decision making.  

In addition, IC3 has organized a two-week training activity entitled “Modelling tools and 
capacity building for climate and public health” at the Oswaldo Cruz Foundation Itaboraí 
Palace in Petrópolis, Rio de Janeiro, Brazil. Also contacts exist to the Public Health Agency 
of Barcelona and the Ministry of Health in Catalonia to implement an alert system for 
mortality-derived casualties associated to heatwaves.  
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