

ECLISE: Enabling CLimate Information Services for Europe

ECLISE (2011-2013) is a collaborative FP7 research project under the Environment Programme of the European Commission.

The central objective of ECLISE is to take the first step towards the realisation of a European Climate Service.

ECLISE is a European effort in which researchers, in close cooperation with users, develop and demonstrate local climate services to support climate adaption policies.

ECLISE provides climate services for several climate-vulnerable regions in Europe, organized at a sectorial level: cities, water resources, coastal defence and energy production.

ECLISE will define, in conceptual terms, how a pan-European Climate Service could be developed in the future, based on experiences from local services and the involvement of a broader set of European decision makers and stakeholders.

合く、ダ

The aims of ECLISE

- Develop local climate services in four areas: Coasts, Cities, Water and Energy
- Provide an outline and proof of concept for future European-wide Climate Services

- Type: Collaborative project
- Amount of EC contribution: EUR 3,408,670
- Coordinator: KNMI (Dr. Roeland van Oss)

The approach of ECLISE

Tasks

Lead

- Documentation of user requirements
- Evaluation of services by users
- Dealing with uncertainties
- Conclude on best practices

WUR

Tasks

Lead

Theme Urban issues

- 1. Baia Mare
- 2. Oslo

- floods, heat
- waste water
- 3. Greek cities floods, heat
- 4. Sicilian cities floods
- 5. English cities storm
 - Rotterdam floods, drought
- 7. Stockholm
- floods, water

KNMI

6.

Regional water issues

- Baragan Plain drought 1.
- 2. Vrancea 3. Lombardia
- floods, landslides
- water availability
 - floods
- 5. English cities floods
- 6. Sweden water quality
- 7. Somes basin water availability

WUR

WP 7 CONCEPT

Goal concept for pan-European Climate Services

Tasks

- Study existing climate services
- Case studies: water & energy
- Synthesis and recommendations

Lead Climate Service Center

What do Users Need

- Precipitation changes both extremes and average
- Temperature changes mostly to be used as input for models
- Wind and Storms
- Solar Radiation
- Output of impact models (mainly hydrological)

It is all about precipitation

- For 15 out of 19 case studies changes in precipitation is the most important information needed
 - Change in precipitation extremes
 - Input variables for hydrological models
 - To estimate water availability
 - To estimate flood risks
- Precip model data is (most) uncertain

Other findings

- Most users are aware of uncertainties in the data
- It is often unclear how the user will deal with uncertainty
- Need for observations (statistics)
- Climate data is often not the only data needed (land use, sociological)

TASK 3.2: Joint probabilities of storm surge – river discharge extremes

not to *scal*e

TASK 4.4: Flood risk assessment in cities of Eastern Sicily

REGION: Eastern Sicily (ITALY)

PRODUCT: Evaluation of future evolution of heavy precipitation events and their spatial distribution.

USER: **SIAS** (Servizio Informativo Agrometeorologico Siciliano)

DATA INVENTORY AND RESCUE

A data set of 325 daily precipitation records was recovered

Data Sources:

Osservatorio delle Acque (an office of Sicily regional administration) National Air Force Agricultural Research Council Palermo Observatory (18th century record)

Good data availability: 1921 - 2005

		in the second		and the second	prop
No.	Task	Provider	Data needed	Extremes	1
	Coast				-
1.	3.2	KNMI	Rainfall, storms for coastal	yes	a series
3.	3.4	Bjerkness Centre	Storms extreme precip	yes	10.85
	Cities				100 M
5.	4.1	IGAR	Precip, storm, temp wind	Yes	
6.	4.2	Met.No.	Precipitation extremes	yes	
7.	4.3	TUC	Input data for hydrological models	Yes	
8.	4.4	CNR-ISAC	Precipitation extremes	Yes	
9.	4.5	UNEW	Extreme wind speed	Yes	
	Water				
12	5.1	IGAR	Input for agricultural model	No	
13	5.2	IGAR	Extreme precip (5-10 day cum)	Yes	
14	5.3	CNR-ISAS	Temp and precip	No	
15	5.4	TUC	Input data for hydrological models	No	
17.	5.6	SMHI	Input data for hydrological models		
18	5.7	NIHWM	Input data for hydrological models	Yes/no	
	Energy				
20.	6.2	CNR-ISAC	Snow water equiavalent - temp & precip	No	
21.	6.3	NIHWM	Input data for hydrological models	Yes	
24.	6.6	CNR-ISAC	Solar radiation	No	
25.	6.7	TUC	Solar radiation	No	
26	6.8	CNR-ISAC	Temp degree days	No	